• Title/Summary/Keyword: Dynamo Test

Search Result 63, Processing Time 0.059 seconds

A Study on Comparison Test of Disk Brake Lining for Rolling Stock (KRRI -CARS) (철도차량용 디스크 브레이크 라이닝의비교시험 연구)

  • Houg Yong-Ki;Kwon Sung-Tae;Chung Jong-Duk;Kim Jung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.483-488
    • /
    • 2004
  • The inter-laboratory comparison test which is demanded on the authorized test of ISO/IEC 17025 is the program to guarantee the confidence of test result. This paper, as a part of the inter-laboratory comparison test between South Korea and China, is refered to the characteristic of friction coefficient of disk brake lining for rolling stock according to disk type. Brake tests were carried out under constant brake force and operating sequence by using dynamo-tester according to disk and disk lining types. To establishing the confidence of test result, we calculated A type uncertainty about friction coefficient and investigated the factors about the variation of friction coefficient.

  • PDF

A study on the development of a Fe-based organic Drake lining with sponge structure for rolling stock of 150km/h train (150km/h급 비석면 스폰지형 철계 브레이크 라이닝 개발 연구)

  • 최경진;이동형;고광범;권영필
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.219-225
    • /
    • 2000
  • This study is to develop a Fe-based disc brake lining with sponge structure for rolling stock of 150km/h train and to concept design with 3 groove type for brake disc reducing hot hair-crack and certainly friction coefficient. The developing brake lining would be to presumption of saving 300 million won during one year

  • PDF

Development of Sintered Friction Material for High Speed Train (고속 전철용 소결 마찰재료 개발)

  • 김기열;김상호;이범주;조정환
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.779-786
    • /
    • 2002
  • The Friction Brake Pad of High Speed Train is the most important parts in brake system, which is usually made of Cu-based Sintered friction material. This study has been carried out about the formulation effects of sintered friction material and made lots of sample brake pads. Then, we have done the performance test of the developed product by using full scale inertia Dynamo-meter. This performance test (braking speed 300km/h) was conducted as GEC Alsthom Standard test procedure and High Speed Brake Test (braking speed 350km/h) was done at "Poli" in Italy. The friction properties of this product was almost identical with the brake pad which is currently used to TGV. And the temperature of brake disk on braking speed 350Km/h was a little higher.

  • PDF

The development of high wear resistant tappet in diesel engine (Diesel Engine용 내마모 초경 Tappet 개발)

  • 송근철;심동섭;김경운;조정환
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.313-322
    • /
    • 1998
  • Tappet has wear problems like scuffing or pitting because of high Hertzian contact stress by line contact type between cam and tappet. To overcome this wear problems, we developed the high wear resistant tappet. Developed tappet consists of WC base alloyed tip and steel body. These two parts were directly bonded each other at high temperature under vacuum condition. To estimate the wear resistance of tungsten carbide tappet, we perform the scuffing test and engine dynamo test. As the result, tungsten carbide tappet has better wear resistance than conventionally chilled iron tappet.

  • PDF

A Evaluation of Emergency Braking Performance for Electro Mechanical Brake using Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기를 적용한 전기기계식 제동장치의 비상제동 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Joon-Hyuk;Kim, Seog-Won;Kim, Sang-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.170-177
    • /
    • 2020
  • This study examined the clamping force control method and the braking performance test results of an electromechanical brake (EMB) using braking test equipment. Most of the studies related to EMBs have been carried out in the automotive field, dealing mainly with the static test results for various control methods. On the other hand, this study performed a dynamic performance evaluation. The three-phase interior permanent magnet synchronous motor (IPMSM) was applied to drive the actuator of the EMB, and the analysis was verified by JMAG(Ver. 18.0), which is finite element method (FEM) software. The current control, speed control, and position control were used for clamping force control of the EMB, and the maximum torque per ampere (MTPA) control was applied to the current controller for efficient control. The EMB's emergency braking deceleration performance was tested in the same way as conventional pneumatic brake systems when the wheel of a train rotates at 110 km/h, 230 km/h, and 300 km/h. The emergency braking time, with the wheel stopped completely at the maximum rotational speed, was approximately 73 seconds. The similarity of the braking time and deceleration pattern was verified through a comparison with the performance test results of the pneumatic brake system applied to the next generation high-speed railway vehicle (HEMU-430X).

Design of a Real Time Simulator for Inverter Unit Test of PM Synchronous Motor (인버터 장치 실험용 영구자석 동기전동기의 실시간 시뮬레이터 설계)

  • Oh, Hyuncheal;An, Byoung Woong;Cho, Kwan Yuhl;Kim, Hag Wone;Cho, Jung Gu;Moon, Yong Gi
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.116-117
    • /
    • 2013
  • The real time simulator for testing the high power inverter unit of a PM synchronous motor is proposed. The power converter of the real time simulator can replaces the dynamo test equipment that consists of a PMSM(PM synchronous motor) and load unit. It is verified by the simulation that the real time simulator has a similar electrical and mechanical characteristics of the PM synchronous motor.

  • PDF

Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade (축류형 3차원 터빈익형의 성능시험장치 개발)

  • Chang, B.I.;Kim, D.S.;Cho, S.Y.;Kim, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

Conceptual Design of Electric-Pump Motor for 50kW Rocket Engine (50kW급 로켓 엔진용 전기펌프 모터의 개념 설계)

  • Kim, Hong-Kyo;Kwak, Hyun-Duck;Choi, Chang-Ho;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Electric pump system is new technology for next generation propulsion unit. The system has simple structure which dose not need gas generator, injector and turbine and might better pump for low cost and low payload rocket. Therefore, this paper suggests conceptual design of electric-pump Permanent-Magnet Synchronous Motor (PMSM) which has 50 kW & 50,000 RPM for rocket. To satisfy the system's requirement, electromagnetic analysis is conducted for suitable inner and outer diameter of stator and rotor which uses 4000 Gauss cylinder magnet and Inconel 718 can to fix whole rotor. Futhermore, to confirm rotational vibration, rotordynamics analysis is conducted. By this analysis, Campbell diagram is printed. From the diagram, natural frequency could be determined for the only motor and dynamo meter test bench.

Analysis of pneumatic braking component effects and characteristics of a diesel electric locomotive (디젤전기기관차의 공압제동 영향인자 및 특성 분석)

  • Choi, Don Bum;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.541-549
    • /
    • 2018
  • This paper deals with the braking dynamic behavior of diesel electric locomotive pulling domestic cargo and passenger vehicles. Friction coefficient, pneumatic pressure, and running resistance affecting the braking system were tested. For the friction coefficient, the Dynamo test was performed with reference to UIC 541-4. The results are analyzed by multivariate regression and the relationship between braking force and ititial velocity is presented. The pneumatic pressure were classified into service braking and emergency braking. In order to reflect the characteristics of the brake valve and piping, the pressure rising over time was measured in the vehicle. In order to reflect the external force acting on the vehicle, we carried out the test of EN 14067-4 and presented the second order polynomial formula on a running resistance. The running resistance test results were compared with other countries. The dynamic behavior of a diesel electric locomotive running on a straight flat track based on vehicle resources, friction coefficient, braking pressure, and running resistance is simulated using the time integration presented in EN 14531-1. The simulation results were compared and verified with the vehicle braking test results. The results of this study can be used to analyze the dynamic braking behavior of a train. Also, it is expected that various parameters affecting braking in vehicle design can be analyzed and used as basic data for braking performance improvement.

Study on Analysis of Single Phase Induction Motor Considering Saturation Factor (포화계수를 고려한 단상 유도전동기의 해석에 관한 연구)

  • Cho, Su-Yeon;Kim, Kwang-Soo;Im, Jong-Bin;Ryu, Gwang-Hyeon;Oh, Se-Young;Ahn, Han-Woong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.846-847
    • /
    • 2011
  • This paper presents the study on analysis of single phase induction motor characteristics by equivalent circuit. For high efficiency of single phase induction motor, the motor parameters used for equivalent circuit analysis is important. The accuracy of equivalent circuit analysis of motor depends on the circuit parameters like saturation factor. Therefore this paper proposed the analysis method considering saturation factor. The saturation factor was calculated by iteration routine and numerical method. this proposed method was verified by FEM analysis results and dynamo test results of the prototype model.

  • PDF