DOI QR코드

DOI QR Code

A Evaluation of Emergency Braking Performance for Electro Mechanical Brake using Interior Permanent Magnet Synchronous Motor

매입형 영구자석 동기전동기를 적용한 전기기계식 제동장치의 비상제동 성능평가

  • Baek, Seung-Koo (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Oh, Hyuck-Keun (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Park, Joon-Hyuk (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Kim, Seog-Won (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Kim, Sang-soo (Advanced Railroad Vehicle Division, Korea Railroad Research Institute)
  • 백승구 (한국철도기술연구원 차세대철도차량본부) ;
  • 오혁근 (한국철도기술연구원 차세대철도차량본부) ;
  • 박준혁 (한국철도기술연구원 차세대철도차량본부) ;
  • 김석원 (한국철도기술연구원 차세대철도차량본부) ;
  • 김상수 (한국철도기술연구원 차세대철도차량본부)
  • Received : 2020.02.28
  • Accepted : 2020.06.05
  • Published : 2020.06.30

Abstract

This study examined the clamping force control method and the braking performance test results of an electromechanical brake (EMB) using braking test equipment. Most of the studies related to EMBs have been carried out in the automotive field, dealing mainly with the static test results for various control methods. On the other hand, this study performed a dynamic performance evaluation. The three-phase interior permanent magnet synchronous motor (IPMSM) was applied to drive the actuator of the EMB, and the analysis was verified by JMAG(Ver. 18.0), which is finite element method (FEM) software. The current control, speed control, and position control were used for clamping force control of the EMB, and the maximum torque per ampere (MTPA) control was applied to the current controller for efficient control. The EMB's emergency braking deceleration performance was tested in the same way as conventional pneumatic brake systems when the wheel of a train rotates at 110 km/h, 230 km/h, and 300 km/h. The emergency braking time, with the wheel stopped completely at the maximum rotational speed, was approximately 73 seconds. The similarity of the braking time and deceleration pattern was verified through a comparison with the performance test results of the pneumatic brake system applied to the next generation high-speed railway vehicle (HEMU-430X).

본 논문은 전기기계식제동장치(EMB : Electro Mechanical Brake, 이하 EMB)의 제동 압부력(clamping force) 제어방법과 제동시험장비(dynamo test equipment)를 활용한 제동성능 평가결과에 대하여 다룬다. EMB와 관련한 연구는 자동차 분야에서 대부분 수행되었으며, 다양한 제어방법에 대한 정적상태의 압부력 시험결과를 주로 다루고 있으나 본 논문은 동적상태에서의 성능평가를 수행하였다. EMB의 구동을 위해 3상 매입형 영구자석 동기전동기(IPMSM : Interior Permanent Magnet Synchronous Motor, 이하 IPMSM)가 적용되었으며 유한요소법(FEM : Finite Element Method, 이하 FEM) 해석 소프트웨어인 JMAG을 통하여 설계 및 해석을 수행하였다. EMB의 압부력제어를 위해 전류제어, 속도제어 및 위치제어가 수행되었으며, 전류제어기는 단위전류당 최대토크제어(MTPA : Maximum Torque Per Ampere, 이하 MTPA)가 적용되었다. 제동성능평가는 공압식 제동장치의 비상제동 성능시험 절차와 동일한 방법으로 수행되었으며 시험장비에 설치된 고속철도차량의 차륜을 110 km/h, 230 km/h 및 300 km/h로 회전하는 상태에서 각각의 속도 조건에 따른 EMB의 제동 압부력을 인가하여 감속성능을 확인하였다. 최고속도(300 km/h) 상태에서 비상제동 시험결과는 73초의 시간이 소요되었으며 차세대고속철도차량(HEMU-430X)에 적용된 공압식 제동장치의 성능시험 결과와 비교를 통하여 제동소요 시간 및 감속패턴의 유사함 확인하였다.

Keywords

References

  1. R. T. Bannatyne, "Advances and challenges in electronic braking control technology", SAE Technical Papers, Vol.107, No.4, pp.2324-2328, Sep. 1998.
  2. M. Sundar, D. Plunkett, "Brake-by-Wire, Motivation and Engineering-GM Sequel", SAE Technical Papers, Jan. 2006. DOI: https://doi.org/10.4271/2006-01-3194
  3. J. K. Ahn, K. H. Jung, D. H. Kim, H. B. Jin, H. S. Kim, S. H. Hwang, "Analysis of a regenerative braking system for hybrid electric vehicles using an electro-mechanical brake", International Journal of Automotive Technology , Vol.10, No.2, pp.229-234, Apr. 2009. DOI: https://doi.org/10.1007/s12239-009-0027-z
  4. M.R.A Atia, S.A. Haggag, A.M.M. Kamal, "Enhanced electromechanical brake-by-wire system using sliding mode controller", Dyn. Syst. Meals control, vol.138, No.4, pp.041003, April. 2016. DOI: https://doi.org/10.1115/1.4032484
  5. Y. H. Ki, K. J. Lee, J. S. Cheon, H. S. Ahn, "Design and implementation of a new clamping force estimator in electro-mechanical brake systems", International Journal of Automotive Technology, Vol. 14, No.5, pp.739-745, Oct. 2013. DOI: https://doi.org/10.1007/s12239-013-0081-4
  6. C. Jo, S. Hwang, and H. Kim, "Clamping-force control for electromechanical brake", IEEE Transactions on Vehicular Technology, Vol.59, No.7, pp.3205-3212, Sep. 2010. DOI: https://doi.org/10.1109/TVT.2010.2043696
  7. T. M. Jahns, G. B. Kliman, T. W. Neumann, "Interior Permanetn-Magnet Synchronous Motors for Adjustable-Speed Drives", IEEE Transactions on Industry Applications, Vol.IA-22, No.4, pp.738-747, July/August 1986. DOI: https://doi.org/10.1109/TIA.1986.4504786
  8. S. Morimoto, K. Hatanaka, Y. Tong, "Servo Drive System and Control Characteristics of Salient Pole Permanent Magnet Synchronous Motor", IEEE Transactions on Industry Applications, Vol.29, No.2, pp.338-343, Mar/Apr. 1993. DOI: https://doi.org/10.1109/28.216541