• 제목/요약/키워드: Dynamic traffic

검색결과 1,078건 처리시간 0.03초

홈 네트워크에서 적응적 차등화 서비스를 위한 동적 우선순위 조절 기법 (A Dynamic Priority Control Method to Support an Adaptive Differentiated Service in Home Networks)

  • 정광모;임승옥;민상원
    • 한국통신학회논문지
    • /
    • 제29권7B호
    • /
    • pp.641-649
    • /
    • 2004
  • 홈 네트워크에서 다양한 응용(application) 트래픽(traffic) 간의 차등화 된 서비스를 제공하기 위해서 트래픽 변화에 따라 적응적으로 우선순위(priority)를 재할당하는 알고리즘을 제안하고, FPGA를 이용하여 구현하였다. 제안된 구조는 QoS를 위한 부가적인 시그널링 프로토콜이 없이도 네트워크 트래픽 조절이 가능하도록 설계되었고, 또한 홈 네트워크 트래픽을 그 특징에 따라 제어 데이터 트래픽, 일반 인터넷이나 데이터 트래픽, 그리고 멀티미디어 데이터 트래픽으로 분류하고 이를 네트워크 트래픽 상황에 적응적으로 차등화 서비스를 제공할 수 있도록 설계되었다. 시뮬레이션을 통하여 제시한 알고리즘의 성능을 검증하고 FPGA구현을 통하여 실현가능성을 제시하였다.

FTMS 자료를 활용한 고속도로 Corridor 동적 분석 (A Dynamic Traffic Analysis Model for the Korean Expressway System using FTMS)

  • 유정훈;이무영;이승준;성지홍
    • 대한교통학회지
    • /
    • 제27권6호
    • /
    • pp.129-137
    • /
    • 2009
  • 첨단교통체계의 기술발전과 교통 분석의 수준이 상세해짐에 따라 동적 교통 분석에 대한 필요성이 증가하고 있다. 기존의 정적인 분석이 하루 평균 개념의 통행특성과 네트워크 상태를 묘사한 반면, 동적 분석에서는 시간흐름에 따른 네트워크의 상태를 분석한다. 본 논문에서는 교통시스템 동적 분석의 필요성을 인식하여, 고속도로망을 대상으로 FTMS 자료를 활용한 분석 방법론을 개발하였다. 개별 차량의 실제 통행기록 자료인 TCS 자료를 이용하여 전국 고속도로망을 대상으로 동적 기종점 통행량을 구축하였으며, 시뮬레이션 연산시간 문제 해결을 위해 분석범위를 설정한 Subarea 분석을 활용하였다. 이를 위해 전국 고속도로망을 대상으로 구축된 시간대별 기종점 통행량을 Subarea 기종점 통행량으로 전환하기 위한 방법론을 개발하였다. 구축된 모형의 적용을 위해 시나리오 분석을 실시하였으며, 이를 통해 각각의 시나리오에 대하여 기존의 단편적인 효과분석과 달리 하루 중 시간대별 교통여건에 따른 네트워크 상태분석을 수행하였다. 본 연구는 동적 교통 분석의 초기 시도라는 점과 실제 기종점 자료인 FTMS 자료를 활용한 분석이라는 점에서 의미를 가지며, 현재 교통 분석의 큰 흐름인 동적 교통 분석의 필요성을 부각시키고자 한다. 향후 고속도로뿐만이 아닌 기타 도로를 포함한 모형 구축이 필요하며, Hybrid 모형 및 프로그램 개발을 통해 궁극적인 목표인 실시간동적 분석 모형 개발을 위한 연산시간 문제 해결이 필요할 것이다.

무선 ATM망에서 QoS 향상을 위한 동적 자원 할당 방식 (Dynamic Resource Allocation Method to improve QoS in the Wireless ATM Networks)

  • 김승환;이선숙;이재홍;장동혁
    • 한국정보처리학회논문지
    • /
    • 제7권9호
    • /
    • pp.2940-2947
    • /
    • 2000
  • 무선 ATM 환경에서 다양한 멀티미디어 트래픽을 지원하기 위해서는 매체 접RMS 제어(MAC) 프로토콜이 필요하다. MAC 프로토콜은 다양한 트래픽 클래스에 대한 QoS를 보장하면서 제한된 무선 대역폭을 효율적으로 활용할 수 있도록 설계되어야 한다. 본 논문에서는 서로 다른 종류의 트래픽이 혼재된 무선 ATM 환경에서 각 서비스 클래스의 QoS를 만족할 수 있는 동적 자원 할당 방식 기반의 MAC 프로토콜을 제안하였다. CBR이나 VBR에 비해 낮은 우선 순위를 가지는 ABR 트래픽에 대해서는 최소 대역폭을 확보함으로써 지연을 크게 개선하였으며, 실시간 VBR 트래픽의 경우에는 대역폭이 초기에 경쟁을 통해 할당되고 이후로는 경쟁 없이 대역폭을 할달함으로써 처리율을 증가시켰다.

  • PDF

교차로에서 원활한 교통 흐름 지원을 위한 VANET 기반 동적인 교통 신호등 제어 기법 (Dynamic Traffic Light Control Scheme Based on VANET to Support Smooth Traffic Flow at Intersections)

  • 차시호;이종언;류민우
    • 디지털산업정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.23-30
    • /
    • 2022
  • Recently, traffic congestion and environmental pollution have occurred due to population concentration and vehicle increase in large cities. Various studies are being conducted to solve these problems. Most of the traffic congestion in cities is caused by traffic signals at intersections. This paper proposes a dynamic traffic light control (DTLC) scheme to support safe vehicle operation and smooth traffic flow using real-time traffic information based on VANET. DTLC receives instantaneous speed and directional information of each vehicle through road side units (RSUs) to obtain the density and average speed of vehicles for each direction. RSUs deliver this information to traffic light controllers (TLCs), which utilize it to dynamically control traffic lights at intersections. To demonstrate the validity of DTLC, simulations were performed on average driving speed and average waiting time using the ns-2 simulator. Simulation results show that DTLC can provide smooth traffic flow by increasing average driving speed at dense intersections and reducing average waiting time.

Estimation of the OD Traffic Intensities in Dynamic Routing Network: Routing-Independent Tomography

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.795-804
    • /
    • 2003
  • In this article, a tomography for the estimation of the origin-destination(OD) traffic intensities in dynamic routing network is considered. Vardi(1996)'s approach based on fixed route is not directly applicable to dynamic routing protocols, which arises from the fact that we cannot access the route at every observation time. While it uses link-wise traffics as the observations, the proposed method considers the triple of ingress/outgress/relayed traffics data at each node so that we can transform the problem into a routing-independent tomography. An EM algorithm for implementation and some simulated experiments are provided.

건전도 모니터링을 위한 P.C. 상자형 교량의 동적 특성 분석 (A Study on Dynamic Characteristics of P.C. Box Girder Bridge for Condition Monitoring)

  • 이선구;이성우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.131-137
    • /
    • 1996
  • To perform condition monitoring of P.C. Box girder bridge under ambient traffic, dynamic characteristics were identified using the results of load test an analysis. It was found that natural frequencies obtained from the measured acceleration data for the forced vibration part and free vibration part were nearly identical. Thus it can be concluded that dynamic parameters are properly determined under ambient traffic condition. Finite element model for analysis was calibrated using measured frequencies. Change of dynamic characteristics were predicted through analysis of the established finite element model with anticipated change.

  • PDF

차량 동역학을 이용한 멀티에이전트 기반 교통시뮬레이션 개발 II : 운전자 및 차량 에이전트 개발 (Multi-Agent for Traffic Simulation with Vehicle Dynamic Model II : Development of Vehicle and Driver Agent)

  • 조기용;배철호;권성진;서명원
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.136-145
    • /
    • 2004
  • In companion paper, the composition and structure of the traffic environment is derived. Rules to regulate agent behaviors and the frameworks to communicate between the agents are proposed. In this paper, the model of a driver agent which controls a vehicle agent is constructed. The driver agent is capable of having different driving styles. That is, each driver agent has individual behavior settings of the yielding index and the passing index. The yielding index can be defined as how often the agent yields in case of lane changes, and the passing index can be defined as how often the agent passes ahead. According to these indices, the agents overtake or make their lanes for other vehicles. Similarly, the vehicle agents can have various vehicle dynamic models. According to their dynamic characteristics, the vehicle agent shows its own behavior. The vehicle model of the vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation has proceeded for an interrupted flow model. The result has shown that it is possible to express the characteristics of each vehicle and its driver in a traffic flow, and that the change of the traffic state is closely related with the distance and the signal delay between intersections. The system developed in this paper shows the effectiveness and the practical usefulness of the traffic simulation.

자동화 컨테이너 터미널의 AGV 교통흐름 동적 최적화 (Dynamic Optimization of the Traffic Flow of AGVs in an Automated Container Terminal)

  • 김후림;최이;박태진;류광렬
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권5호
    • /
    • pp.591-595
    • /
    • 2010
  • 본 논문에서는 자동화 컨테이너 터미널에서 컨테이너를 운반하는데 사용되는 무인 운반 차량(AGV)의 교통흐름을 동적으로 최적화하는 방안을 제안한다. 터미널 환경은 다수의 차량이 한정된 영역 내에서 주행하므로 높은 생산성을 위해서는 차량 사이의 간섭 및 병목현상을 최소화하도록 교통흐름을 제어해야 한다. 제안 알고리즘은 터미널 환경의 동적 변화에 대응하여 유전알고리즘을 이용하여 AGV의 교통흐름을 최적화한다. 알고리즘의 속도향상을 위해 이전에 수행한 최적화 결과를 활용하는 방안이 시도되었다. 시뮬레이션 실험을 통해 제안 알고리즘의 성능을 확인하였다.

An Adaptable Integrated Prediction System for Traffic Service of Telematics

  • Cho, Mi-Gyung;Yu, Young-Jung
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.171-176
    • /
    • 2007
  • To give a guarantee a consistently high level of quality and reliability of Telematics traffic service, traffic flow forecasting is very important issue. In this paper, we proposed an adaptable integrated prediction model to predict the traffic flow in the future. Our model combines two methods, short-term prediction model and long-term prediction model with different combining coefficients to reflect current traffic condition. Short-term model uses the Kalman filtering technique to predict the future traffic conditions. And long-term model processes accumulated speed patterns which means the analysis results for all past speeds of each road by classifying the same day and the same time interval. Combining two models makes it possible to predict future traffic flow with higher accuracy over a longer time range. Many experiments showed our algorithm gives a better precise prediction than only an accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.

상황인식 기반 지능형 최적 경로계획 (Intelligent Optimal Route Planning Based on Context Awareness)

  • 이현정;장용식
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.