Abstract
In this paper, a method that dynamically adapts the traffic flow of automated guided vehicles (AGVs) used in automated container terminals to the changing operational condition is presented. In a container terminal, the AGVs are vulnerable to traffic congestion because a large number of AGVs operate in a limited area. In addition, dynamically changing operational condition requires the traffic flow of AGVs to be continuously adjusted to keep up with the change. The proposed method utilizes a genetic algorithm to optimize the traffic flow. Exploiting the dynamic nature of the problem an approach that reuses the results of the previous search is tried to speed up the convergence of the genetic algorithm. The results of simulation experiments show the efficiency of the proposed method.
본 논문에서는 자동화 컨테이너 터미널에서 컨테이너를 운반하는데 사용되는 무인 운반 차량(AGV)의 교통흐름을 동적으로 최적화하는 방안을 제안한다. 터미널 환경은 다수의 차량이 한정된 영역 내에서 주행하므로 높은 생산성을 위해서는 차량 사이의 간섭 및 병목현상을 최소화하도록 교통흐름을 제어해야 한다. 제안 알고리즘은 터미널 환경의 동적 변화에 대응하여 유전알고리즘을 이용하여 AGV의 교통흐름을 최적화한다. 알고리즘의 속도향상을 위해 이전에 수행한 최적화 결과를 활용하는 방안이 시도되었다. 시뮬레이션 실험을 통해 제안 알고리즘의 성능을 확인하였다.