• Title/Summary/Keyword: Dynamic system

Search Result 14,417, Processing Time 0.041 seconds

On the Design of Digital Sub-Controller for Accuracy Improvement of Analog Speed Control System (애널로그 속도제어계의 제어정도를 향상하기 위한 디지털제어기의 설계)

  • Han, Se-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.36-41
    • /
    • 1988
  • Analog and Digital Speed Control Systems have mutually complementary properties. Analog System has good dynamic characteristics and moderate steady-state accuracy and can be implemented economically with operational a ampliers. Digital System, on the contray, has good static accuracy, but relatively poor dynamic property. So, a hybrid system which uses both digital and analog control can have good static and dynamic characteristics. In this paper, it is shown that a simple digital controller can improve steady-state accuracy of existing analog control system satisfactorily, and some design criteria are presented also.

  • PDF

Dynamic Compliance and its Compensation Control of HIVC Force Control System

  • Ba, Kai-xian;Yu, Bin;Li, Wen-feng;Wang, Dong-kun;Liu, Ya-liang;Ma, Guo-liang;Kong, Xiang-dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.1008-1020
    • /
    • 2018
  • In this paper, the dynamic compliance and its compensation control of the force control system on the highly integrated valve-controlled cylinder (HIVC), the joint driver of the hydraulic drive legged robot, is researched. During the robot motion process, the outer loop dynamic compliance control is applied on the base of hydraulic control inner loop and most inner loop control are the force or torque closed loop control. While the dynamic compliance control effectiveness of outer loop can be affected by the inner loop self-dynamic-compliance. Based on this problem, the dynamic compliance series composition theory of HIVC force control system as well as the analysis of its self-dynamic-compliance is proposed. And then the paper comes up with the compliance-enhanced control, which is a compound compensation control method of dynamic compliance with multiple series branches. Finally, the experiment results indicate that the control method mentioned above can enhance the dynamic compliance of HIVC force control system observably. This provides the compensation control method of inner loop dynamic compliance for the outer loop compliance control requiring the high accuracy and high robustness for the robot.

Hydraulically Actuated of Half Car Active Suspension System

  • Sam, Yahaya Md.;Osman, Johari Halim Shah
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1721-1726
    • /
    • 2004
  • The studies of the half active suspension have been performed using various suspension models. In the early days, the modeling considered the inputs to the active suspension as the linear forces. Recently, due to the development of new control theory, the forces input to the half car active suspension system has been replaced by an actual input to the hydraulic actuators. Therefore, the dynamic of the active suspension system now consists of the dynamic of half car suspension system plus the dynamic of the hydraulic actuators. This paper proposed a new modeling technique in integrating both dynamic models. The proportional integral sliding mode control technique is utilized to control the hydraulically actuated of the half car active suspension system. The performance of the half car hydraulically actuated active suspension system is simulated with a bump input. The results show that the proposed modeling technique and the proportional integral sliding mode controller are improved the ride comfort and ride handling of the half car active suspension system.

  • PDF

Design of a dynamic output feedback law for replacing the output derivatives

  • Son, Young-I.;Shim, Hyung-Bo;Jo, Nam-H.;Kim, Kab-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.337-341
    • /
    • 2003
  • This paper provides a design method for a dynamic output feedback controller which stabilizes a class of linear time invariant systems. We suppose all the states of the given system is not measurable and only the outputs are used to stabilize the system. The systems considered cannot be stabilized by a static output feedback only. In the scheme we first assume that the given system can be stabilized by a state feedback composed of its output, velocity of the output and its higher order derivative terms. Instead of using the derivatives of the output, however, a dynamic system is constructed systematically which replaces the role of the derivative terms. Then, a high-gain output feedback stabilizes the composite system together with the newly constructed system. The performance of the proposed control law is illustrated in the comparative simulation studies of a numerical example with an observer-based control law.

  • PDF

A Computer Simulation Method for Dynamic Analysis of Hydraulic Engine Mount System

  • Lee, Sang-Beom;Park, Dong-Woon;Yim, Hong-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.42-48
    • /
    • 2002
  • In this paper, a computer simulation method is presented far the dynamic analysis of a hydraulic engine mount system. The hydraulic engine mount system controls the damping characteristics using the viscosity of fluid flow. The complex stiffnesses of the main rubber for the hydraulic engine mount system are computed using a finite element analysis. The equations of motion considering the parameters of the hydraulic engine mount system are derived. To investigate the effects of the hydraulic engine mount system, the computer simulation running over a typical rough road is carried out using a vehicle dynamic model. These results are compared with those of the conventional rubber mount system.

A Study on the Dynamic Behavior of a 2-step Variable Valve Switching System for Automotive Engines (자동차 엔진용 2단 가변밸브 기구의 스위칭 시스템 동적 거동에 관한 연구)

  • Kim, Dongil;Kim, Dojoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.39-48
    • /
    • 2014
  • Variable valve actuation system is one of the widely used techniques to improve the fuel efficiency and power of automotive engines. 2-step variable valve actuation systems are also paid attention for the application to direct acting type valve train systems. Besides its advantages in size, weight, relatively simple structure, ets, however, 2-step variable valve actuation system has inherent disadvantages in dynamic instability of switching system to alter discontinuous lift modes. In this study, both experimental and analytical studies are performed to understand the dynamic behavior of a switching mechanism of a 2-step variable valve actuation system, and present a design method to improve its dynamic instability.

Dynamic Performance of HVDC According to Excitation System Characteristics of Synchronous Compensator in a Weak AC System (약한 AC 계통에서 동기조상기용 여자 시스템 특성에 따른 HVDC 과도 특성)

  • Kim, Chan-Gi;Kim, Jeong-Bu;Sim, Eung-Bo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.431-440
    • /
    • 2000
  • This paper analyses the dynamic performance of HVDC System connected to a weak AC system for various exciter characteristics of synchronous machines connected at the converter bus. Conventionally capacitors are used to supply reactive power requirement at a strong converter bus. But the installation of synchronous machine is essential in a isolated weak network to re-start after a shutdown of HVDC and to increase system strength. The dynamic performance of a synchronous machine depends on the characteristics depends of its exciter. In this paper, several exciter types are used to investigate their effect on the dynamic performance of the HVDC system and modifications to standard exciter topologies are suggested to mitigate observed problems.

  • PDF

Effects of parameters of a linear dynamic vibration absorber on the vibrational characteristics of damped vibrational systems (선형동흡진기의 매개변수가 감쇠진동계의 진동특성에 미치는 영향)

  • Yoon, Jang-Sang;Lee, Yang-U;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.136-144
    • /
    • 1989
  • This paper presents the vibrational characteristics of linear damped vibrational systems with a linear dynamic absorber. The amplitude ratios of main vibrational system are derived from the equation of motion for the system, and optimal natural frequency ratio and damping ratio of dynamic absorber are obtained by computer simu- lation, which minimize the amplitude ratio of main vibrational system for the whole range of the frequency ratio. And, the effects of the parameters on the amplitude ratios are investigated. As the results, the effect of the natural frequency ratio on the amplitude ratio of main vibrational system is more important than that of the damping ratio of dynamic absorber as damping ratio of main vibrational system becomes larger. For the case of large damping ration of main vibrational system becomes larger. For the case of large damping ratio of main vibration system, the amplitude ratios are not decreased dramationally in spite of inoreasing mass ratio.

  • PDF

Simulation of active vibration control using phase adjusting method with high speed flexible rotor system (초고속 유연회전체의 위상조절법을 이용한 능동진동제어 시뮬레이션)

  • Na J.B.;Kim K.S.;Lee W.C.;Kim C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.425-426
    • /
    • 2006
  • This study proposes a new simulation method of high speed rotor system with the dynamic model using multi body dynamic analysis tool and with a new phase modulating technique as a system control algorithm. A dynamic model of high speed rotor system was built by, ADAMS, commercial multi body dynamic program. The phase modulating technique is a new control algorithm for a rotor system. This algorithm can control system using an adaptive proportional gain and an adaptive phase which are obtained from periodical input signal. To make control system, a ADAMS model and component parameters and phase controller was composed by Matlab Simulink And simulate it.

  • PDF

Prediction of Dynamic Expected Time to System Failure

  • Oh, Deog-Yeon;Lee, Chong-Chul
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.244-250
    • /
    • 1997
  • The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent Property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability's or components are combined, which results in the dynamic MTTF or system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not.

  • PDF