• Title/Summary/Keyword: Dynamic speckle

Search Result 15, Processing Time 0.029 seconds

Enhancement of Speckle Contrast in vivo by Combining Linearly Polarized Laser Light and an Analyzer

  • Qureshi, Muhammad Mohsin;Mac, Khuong Duy;Kim, Andrew Hyunjin;Kim, Young Ro;Chung, Euiheon
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.351-361
    • /
    • 2021
  • Speckle imaging is capable of dynamic data acquisition at high spatiotemporal resolution, and has played a vital role in the functional study of biological specimens. The presence of various optical scatterers within the tissue causes alteration of speckle contrast. Thus structures like blood vessels can be delineated and quantified. Although laser speckle imaging is frequently used, an optimization process to ensure the maximum speckle contrast has not been available. In this respect, we here report an experimental procedure to optimize speckle contrast via applying different combinations of varying polarization of the illuminating laser light and multiple analyzer angles. Specifically, samples were illuminated by the p-polarization, 45°-polarization, and s-polarization of the incident laser, and speckle images were recorded without and with the analyzer rotated from 0° to 180° (Δ = 30°). Following the baseline imaging of a solid diffuser and a fixed brain sample, laser speckle contrast imaging (LSCI) was successfully performed to visualize in vivo mouse-brain blood flow. For oblique laser illumination, the maximum contrast achieved with p-polarized and s-polarized light was perpendicular to the analyzer's axis. This study demonstrates the optimization process for maximizing the speckle contrast, which can improve blood-flow estimation in vivo.

Motility Contrast Imaging for Drug Screening Applications

  • Jeong, Kwan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.382-389
    • /
    • 2015
  • Motility contrast imaging is a coherence-domain imaging technique that uses cellular motility as a fully endogenous imaging contrast agent. Motility is measured inside tissue using a digital holographic coherence gate that extracts dynamic speckle from fixed depths. The dynamic speckle arises from the normal organelle motion inside cells, and from the movement of the cellular membranes driven by the cytoskeleton. It measures cellular activity and the effects of temperature and osmolarity. Motion is sensitive to cytoskeletal drugs, such as the antimitotic drugs used for cancer chemotherapy, and the effects of drug combinations also can be monitored. Motility contrast imaging is a potential tissue-based assay platform for highthroughput screening of pharmaceuticals.

Self-adaptive and Bidirectional Dynamic Subset Selection Algorithm for Digital Image Correlation

  • Zhang, Wenzhuo;Zhou, Rong;Zou, Yuanwen
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.305-320
    • /
    • 2017
  • The selection of subset size is of great importance to the accuracy of digital image correlation (DIC). In the traditional DIC, a constant subset size is used for computing the entire image, which overlooks the differences among local speckle patterns of the image. Besides, it is very laborious to find the optimal global subset size of a speckle image. In this paper, a self-adaptive and bidirectional dynamic subset selection (SBDSS) algorithm is proposed to make the subset sizes vary according to their local speckle patterns, which ensures that every subset size is suitable and optimal. The sum of subset intensity variation (${\eta}$) is defined as the assessment criterion to quantify the subset information. Both the threshold and initial guess of subset size in the SBDSS algorithm are self-adaptive to different images. To analyze the performance of the proposed algorithm, both numerical and laboratory experiments were performed. In the numerical experiments, images with different speckle distribution, different deformation and noise were calculated by both the traditional DIC and the proposed algorithm. The results demonstrate that the proposed algorithm achieves higher accuracy than the traditional DIC. Laboratory experiments performed on a substrate also demonstrate that the proposed algorithm is effective in selecting appropriate subset size for each point.

A Study on the Vibration Characteristics Analysis of Composite Materials by Using Electronic Speckle Pattern Interferometry Method (전자처리 스페클 패턴 간섭법(ESPI)을 이용한 복합재료의 진동 특성 해석에 관한 연구)

  • 김경석;정성균;정현철;양승필;김형택;김동일;이승환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.68-74
    • /
    • 1998
  • The ESPI(Electronic Speckle Pattern Interferometry) is a real time, full-field, non-destructive optical measurement technique that allows static and dynamic deformation analysis and surface shape measurements of engineering structures. e .g. turbine blades. vehicle engine components, body panels, etc. This technique is very similar to holographic interferometry, but uses a solid static camera and an image processing board for recording and digital processing of speckle patterns. In this paper it is presented that FEM results for the free vibration of symmetrically laminated composite as [30/-30/90]s. The natural frequencies of laminated composite rectangular plates having the particular boundary condition are experimentally obtained. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with calculation by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing (ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Ahmad Akhlaq
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF

A Study on the Vibration Characteristics Analysis of Composite Materials by Using Electronic Speckle PatternInterferometry Method (전자처리 스페클 패턴 간섭법을 이용한 복합재료의 진동 특성 해석에 관한 연구)

  • 김형택;정현철;양승필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.388-392
    • /
    • 1995
  • The Electronic Speckle Pattern Interferometry(ESPI) has been applied to many technical problems such as deformation and displacement measurement, strain visualization and surface roughness monitoring. Composite materials have various complicated characteristics depending on the ply materials,ply orientations,ply stacking sequences and boundary conditions. Therefore, it is difficult to analyze composite material. For efficient use of composit materials in engineering applications, the dynamic behavior such as, natural frequencies and modal patterns should be identified. This studying presents FEM results for the free vibration of symmetrically laminated composite as [30/-30/90] $_{s}$. The natural frequencies of laminated composite rectangular plates having the boundary condition(:2-edge clamped) are experimentally obtained. In order to demonstrate the validity of the experiment,FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.t.

  • PDF

Characterization of Polyolefin Bumper Recycled by Chemical Removal Method using Electronic Speckle Pattern Interferometry (화학적 박리방법과 ESPI에 의한 재생된 폴리올레핀 범퍼수지의 물성평가)

  • 김현경;강기수;김경석;홍진후
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.295-298
    • /
    • 1997
  • Recycl ing of PP/EPR based bumper coated with polyester urethane paint has been per formed by chemical decoating method. Electronic Speckle Pattern Interferometry (ESP11 has been applied to characterize the deformation of polyolef in based bumper. In additon, physical properties and processability of recycled materials have been investigated by dynamic mechanical thermal analysis, impact test and melt flower index measurement. The results show that the deformation ratio of recycled material is higher than that of virgin one. The morphological change of EPR, degree of distribution and dispersion during the recycling process seem to be the most important factor for the deformation and the mechanical properties of recycled materials. The experimental results obtained show that ESPI is very powerful technique to study the thermal mechanical property of polyolefin bumper system.

  • PDF

Automated Measurement System of Carotid Artery Intima-Media Thickness based on Dynamic Programming (다이나믹 프로그래밍 기반 경동맥 내막-중막 두께 자동측정 시스템)

  • Lee, Yu-Bu;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.1
    • /
    • pp.21-29
    • /
    • 2007
  • In this paper, we present a method of detecting the boundary of the intima-media complex for automated measurement based on dynamic programming from carotid artery B-mode ultrasound images and then show the experimental results. We apply the dynamic programming for determining the optimal locations that a cost function is minimized. The cost function includes cost terms which are representing image features such as intensity, intensity gradient and geometrical continuity of the vessel interfaces. Moreover, we improve the boundary continuity by applying the B-spline to smooth the rough boundary due to noise such as speckle, dropout and weak edges. The proposed method has obtained more accurate reproducible results than conventional edge-detection by considering multiple image features and ensures efficient automated measurement by solving the problems of the inter- and intra-observer variability and its inefficiency due to manual measurement.

  • PDF

Determination of Elastic Modulus by Time Average ESPI and Euler-Bernoulli Equation (Time Average ESPI와 Euler-Bernoulli 방정식에 의한 탄성계수 측정)

  • Kim, Koung-Suk;Lee, Hang-Seo;Kang, Young-June;Kang, Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.69-74
    • /
    • 2007
  • The paper proposes a new sonic resonance test for a elastic modulus measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI) and Euler-Bernoulli equation. Previous measurement technique of elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The proposed technique is able to give high accurate elastic modulus of materials through a simple experiment set up and analysis.

A Fiber Wavelength Sensor using Speckle Patterns of a Multimode Fiber (다중모드 광섬유의 스펙클 패턴을 이용한 광섬유 파장센서)

  • Lee, Il-Min;Yang, Byung-Choon;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1123-1125
    • /
    • 1999
  • In this paper, we report a new scheme of multimode fiber sensor which uses pattern matching method. Fiber speckle pattern allows the wide dynamic range of the intensity based sensor. The proposed method uses pre-built specklegram database which is made by image processing techniques of wavelet transform and edge detection for the sake of compact data storage and fast sensing time. We demonstrate our proposed sensor and the experimental results will do presented.

  • PDF