• 제목/요약/키워드: Dynamic movement

검색결과 972건 처리시간 0.033초

알루미늄 합금의 저항점 용접에 관한 연구 ( I ) (A Study on the Resistance Spot Welding of Aluminum Alloy (I))

  • 김상필;홍태민;장희석
    • Journal of Welding and Joining
    • /
    • 제12권4호
    • /
    • pp.127-140
    • /
    • 1994
  • Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. In the resistance spot welding processes the size of molten nugget is a criterion to assess weld quality. Many research have founded on measuring weld nugget size at the same time monitoring welding process parameters such as dynamic resistance and electrode movement. With increasing demand of energy saving, many efforts were made to employ aluminum alloys that are lighter than steel and have relatively equivalent strength to steel in the automobile industry. In this paper, spot weldability of aluminum alloys for various welding conditions were examined by series of experiments. One of the 6000 series (Mg-Si) aluminum alloy, 6383-T4 was chosen, which is currently considered as a substitute for the galvanized steel. Dynamic resistance, electrode movement and corresponding nugget size were observed and compared to the case of steel. Finally, resistance spot welding of dissimilar material (galvanized steel-aluminum alloy) was attempted.

  • PDF

유전자 알고리즘을 이용한 동적 구조물의 가속도 최적화 (Acceleration Optimization of a Dynamic Structure Using a Genetic Algorithm)

  • 정원지;박창권;홍대선
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.25-32
    • /
    • 2004
  • This paper presents a new optimization technique of acceleration curve for dynamic structure's movement in which high speed and low vibration are desirable. This technique is based on a genetic algerian with a penalty function for acceleration optimization under the assumption that an initial profile of acceleration curves constitutes the first generation of the genetic algorithm. Especially the penalty function consists of the violation of constraints and the number of violated constraints. The optimized acceleration of the crane through the genetic algorithm and commercial dynamic analysis software has shown to have accurate movement and low vibration compared to the conventional accelerations with jerk discontinuity.

A Study on the Dynamic Bending Properties of Textile Fabrics

  • Kim, Jong-Jun
    • 패션비즈니스
    • /
    • 제15권3호
    • /
    • pp.84-96
    • /
    • 2011
  • With the advancements in the computer graphics sectors, the visual quality of the virtual clothing implemented by using the 3-dimensional digital clothing software system has been much improved during the past decade. Most of the cloth simulation procedures are complicated due to the multitude of parameters involved in the simulation in order to achieve the appearance of the actual textile fabrics or the movement of the actual clothing as close as possible. Bending properties affect the tactile and visual qualities of the textile fabrics along with the shear and tensile properties. In this study, dynamic bending properties, focused on the movement of the textile fabrics including damping ratio and amplitude, were measured by using a dynamic bending test system.

전압구동 3차원 등가자기회로망법을 이용한 선형 직류전동기의 동특성 해석 (Dynamic Characteristics Analysis of Linear DC Motor Using 3D Equivalent Magnetic Circuit Network Method by Voltage Driven)

  • 염상부;하경호;홍정표;허진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.271-273
    • /
    • 2000
  • This paper presents the dynamic characteristics Linear DC Motor(LDM) using 3 Dimensional Equivalent Magnetic Circuit Network Method(3-D EMCN) by voltage driven. The movement of mover substitutes for the movement of magnetization in permanent magnet expressed by Fourier series. The Dynamic characteristics are carried out from coupling the electrical circuit equation and mechanical kinetic equation.

  • PDF

조도와 주로 변화가 노인 여성 보행 시 낙상 관련 운동역학적 위험요인에 미치는 영향 (Effects of Changes in Illumination Level and Slope on Fall-Related Biomechanical Risk Factors While Walking for Elderly Women)

  • 전현민;박상균
    • 한국운동역학회지
    • /
    • 제25권4호
    • /
    • pp.413-421
    • /
    • 2015
  • Objective : The purpose of this study was to investigate biomechanical changes of the lower limb including dynamic stability with changes in illumination (300Lx, 150Lx, and 5Lx) and slope (level and $15^{\circ}$ downhill) as risk factors for elderly falls. Method : Fifteen elderly females were selected for this study. Seven infrared cameras (Proreflex MCU 240: Qualisys, Sweden) and an instrumented treadmill (Bertec, USA) surrounded by illumination regulators and lights to change the levels of illumination were used to collect the data. A One-Way ANOVA with repeated measures using SPSS 12.0 was used to analyze statistical differences by the changes in illumination and slope. Statistical significance was set at ${\alpha}=.05$. Results : No differences in the joint movement of the lower limbs were found with changes in illumination (p>.05). The maximum plantar flexion movement of the ankle joints appeared to be greater at 5Lx compared to 300Lx during slope gait (p<.05). Additionally, maximum extension movement of the hip joints appeared to be greater at 5Lx and 150Lx compared to 300Lx during slope gait (p<.05). The maximum COM-COP angular velocity (direction to medial side of the body) of dynamic stability appeared to be smaller at 150Lx and 300Lx compared to 5Lx during level gait (p<.05). The minimum COM-COP angular velocity (direction to lateral side to the body) of dynamic stability appeared smaller at 150Lx compared to 5Lx during level gait (p<.05). Conclusion : In conclusion, elderly people use a stabilization strategy that reduces walk speed and dynamic stability as darkness increases. Therefore, the changes in illumination during gait induce the changes in gait mechanics which may increase the levels of biomechanical risk in elderly falls.

Bernard Tschumi의 초기 작품을 중심으로 본 움직임 연구 (A Study on the Movement focused on Bernard Tschumi's Early Works)

  • 서정연
    • 한국실내디자인학회논문집
    • /
    • 제18권1호
    • /
    • pp.27-34
    • /
    • 2009
  • Architect Bernard Tschumi had explored a new architectural conception through his own notional devices such as space, event and movement during 1970s. But, among these notions, the concept of movement was ambiguous and difficult to adopt it for architectural design strategy. Because the movements in everyday's behaviour or in dancing art are significantly different from architectural thought. However he had succeeded in coining the creative notion of movement as almost real body's and of living flesh. He invented an acute methodology and bold interpretation for his early experimental works. So, this paper tried to understand and analyse his concept of movement focused on his early works. The results of this paper's discussion are as follows; First, Tschumi's movement concept Is dynamic one operated by desire and can violate space in physical level as well as metaphysical level. Next, the movement performs the role of generator which deforms space or even generate it. Third, his movement can be readable only when you go down and bring it in practice. Also it Is unblocked potentiality, undetermined sequential material and unfinished practice. Fourth, when Tschumi's movement could be thought as walking, this walking movement makes up a story through rhetorical speech acts that are presented by turns and detours.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

댄스스포츠 구두 굽 유형에 따른 룸바 쿠카라차 동작 변화에 대한 운동학적 분석 (The Kinematic Analysis According to a Dancesport Heel-Shoes Type on Rumba Cucarachas Movement Change)

  • 최인애
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.125-135
    • /
    • 2006
  • This study was to analyze the effect of dancesport heel-shoes heights on Rumba Cucarachas Movement in terms of analysis, and to provide the essential information to decide the proper heel-shoes heights for individual. six female subjects participated in this study. Dependent variables were set and divided into the amount of movement regarding the velocity and angle of the right elbow, pelvis, ankle, and knee. The following conclusion was drawn blow. 1) Angle: We all appeared in 5, 7, 9cm heel height so that we were similar in a knee and elbow angle and no significantly. The plantar flexion appeared greatly as an ankle angle's shoe high and significantly. 2) Velocity: An elbow velocity all appeared in a three shoes so that it was similar. We speed fast speed some in a 7cm heel height. A knee velocity expressed fast speed some in a 5cm heel height. The pelvis velocity in a that it was similar. Generaly, The aspect to be a dancesport competition o'clock and aesthetic is the height. and the muscular strength train after we need the thing to choose suitable to the individual shoe height. It is logical that the decision of heel-shoes heights should be made by anthropometric and sport dynamic analysis in order to maximize the dynamic and aesthetic aspect of dance sport.

체간의 나선방향운동이 운동능력에 미치는 효과 (The Effect Spiral Way Movement of a Trunk Exerts on the Movement Ability)

  • 이인학;남택길
    • 대한임상전기생리학회지
    • /
    • 제5권2호
    • /
    • pp.35-45
    • /
    • 2007
  • The purpose of this study was to examine spiral way movement of a trunk exerts on the movement ability. The details established to achieve for this article. This examination confirmed the weight, weight/height2 index, ratio of lumbar to pelvic, musculoskeletal quantity, push up for 2 minute, pitch a ball and voluntary isometric contraction with flexion and extension of knee joint of the subjects with spiral direct movement. Healthy eighteen subjects who understand fully the significance of procedure, consented to a plan, without neuromuscular disease were participated in two groups of experiment. The group were a spiral movement(9), rectilinear movement(9). Trunk movement tested 2 sessions of a spiral movement and rectilinear movement with a push up for 2 minute, 5days per a week, for the 4 weeks. This experiment tested 3 times with a sufficient rest for fatigue limitation. An analysis of the results used a paired samples t-test for difference from before and after experiment. The following results were obtained; At an internal change of the body, the musculoskeletal quantity was increased significantly to spiral movement group, but the weight was increased significantly, the musculoskeletal quantity was not significant to rectilinear movement. The movement ability evaluation for a external change was increased significantly in a push up for 2 minute, pitch a ball, isometric contraction with extension of knee joint of a spiral movement group, but a push up for 2 minute was increased significantly in a push up for 2 minute on the abdominal muscle training of a rectilinear movement group. As compared with a rectilinear movement, a spiral movement was more effect by cooperation with nerve and musculoskeletal system and an increase in movement ability was caused by learning acknowledgment, muscular reeducation. These results lead us to the conclusion that a spiral movement of trunk was more effect than a rectilinear movement, the coordination of nerve and musculoskeletal system was of importance of Multi-direction movement. Therefore, A further studies concerning the therapeutic exercise intervention and active-dynamic analysis could enhance the development of the most effect on the trunk.

  • PDF

뇌졸중환자의 동적 균형 평가를 위한 sit-to-walk의 신뢰도 연구 (A Reliability Study of Sit-to-walk for Dynamic Balance Assessment in Stroke Patient)

  • 김다연;최종덕;기경일
    • The Journal of Korean Physical Therapy
    • /
    • 제25권5호
    • /
    • pp.303-310
    • /
    • 2013
  • Purpose: The purposes of this study were to evaluate the correlation of clinical tools for assessment of balance and ability of gait, in order to discriminate the phases of sit-to-walk movement of patients with stroke using the motion analysis system, and to investigate the reliability of the phase of sit-to-walk movement according to functional ability of patients with stroke. Methods: Twenty -one patients participated (men 17, women 4) in this study. Sit-to-walk movement of all patients was recorded by the motion analysis system. Berg Balance Scale, Timed Up and Go test, Functional Reach Test, 10 meter Walk Timed Test, and Performance-Oriented Mobility Assessment were used as functional assessment tools. Results: The results of this study showed significant correlation between the phase I, II, IV and total phase duration of sit-to-walk movement and functional assessment tools. In addition, the intraclass correlation coefficient (ICC) showed high reliability in accordance with the functional ability of patients with stroke (Pearson's r 0.93 to 1.00). Conclusion: In conclusion, there is high reliability between measures of the phase of sit-to-walk movement of chronic stroke patients and the clinical assessment tool. Results of this study suggest that measurement of the phase of sit-to-walk movement can be used significantly as an intervention and a clinical tool for patients with stroke.