• 제목/요약/키워드: Dynamic load factor

검색결과 386건 처리시간 0.027초

초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 - (Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection -)

  • 조진구
    • 한국농공학회지
    • /
    • 제40권5호
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF

Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads

  • Piccardo, Giuseppe;Tubino, Federica
    • Structural Engineering and Mechanics
    • /
    • 제44권5호
    • /
    • pp.681-704
    • /
    • 2012
  • The dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads is analysed. The non-dimensional form of the motion equation of a beam crossed by a moving harmonic load is solved through a perturbation technique based on a two-scale temporal expansion, which permits a straightforward interpretation of the analytical solution. The dynamic response is expressed through a harmonic function slowly modulated in time, and the maximum dynamic response is identified with the maximum of the slow-varying amplitude. In case of ideal Euler-Bernoulli beams with elastic rotational springs at the support points, starting from analytical expressions for eigenfunctions, closed form solutions for the time-history of the dynamic response and for its maximum value are provided. Two dynamic factors are discussed: the Dynamic Amplification Factor, function of the non-dimensional speed parameter and of the structural damping ratio, and the Transition Deamplification Factor, function of the sole ratio between the two non-dimensional parameters. The influence of the involved parameters on the dynamic amplification is discussed within a general framework. The proposed procedure appears effective also in assessing the maximum response of real bridges characterized by numerically-estimated mode shapes, without requiring burdensome step-by-step dynamic analyses.

Estimation of Displacements Using the Transformed Response in Time and Frequency Domain

  • Jung, Beom-Seok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.44-50
    • /
    • 2003
  • If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

  • PDF

AGT 시스템 교량-차량 상호작용에 의한 교량응답 시뮬레이션 및 실험 (The Simulation and Experimental Study on the Bridge Response of AGT Bridge - Vehicle interaction System)

  • 나상주;김기봉;송재필;김현호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.395-400
    • /
    • 2007
  • LRT(Light Railway Train), which is a intermediate system of train and bus, is arose for the solution of subway construction cost and the transportation capacity of bus. LRT was introduced in 1980's. About 30 local governments are plan to introduce LRT or constructing LRT, at present. AGT(Automated Guide-way Transit) system, which is a kind of LRT, is operated without driver. Rubber wheeled AGT system can reduce the noise and vibration compare to steel wheeled AGT, so it is estimated as ideal transportation system for urban area. And live loads at bridge are classified as the static load of vehicle and the dynamic wheel contact load which is occurred from the interaction of bridge and vehicle vibration, and the surface roughness. In the case of AGT system, the dynamic increment factor of bridge is greater than the normal train bridge and roadway bridge, because, the weight of AGT vehicle is more light that the train of truck. The exact method for dynamic increment factor is experiment. But this method is needed much money and time, moreover, this method cannot be adopted in design. Therefore, a simulation program for the interaction of AGT bridge, vehicle and surface roughness was developed, in this study. And the program was verified by experiment. As a result, the accuracy of the simulation program can be verified.

  • PDF

도로포장 표면평탄성에 따른 주행차량의 동적 하중 변화 특성 (Variation of Moving Dynamic Vehicle Loads According to Surface Smoothness of Pavement Systems)

  • 김성민;이석근
    • 한국도로학회논문집
    • /
    • 제10권1호
    • /
    • pp.135-144
    • /
    • 2008
  • 주행하는 차량이 도로포장에 가하는 동적 하중은 포장표면의 거칠기에 따라 그 크기가 변화하게 되며 설계하중보다 큰 하중이 재하 될 경우에는 포장의 공용성에 영향을 미치게 된다. 따라서 본 논문에서는 포장표면의 평탄성에 대한 지불규정을 시방에 적용하여 포장의 성능 및 품질향상을 도모하기 위한 기본연구로써 도로포장의 표면에 거칠기가 있을 때 주행차량에 의한 동적 하중 크기의 변화를 분석하였다. 먼저 평탄성이 좋지 않은 오래된 포장과 평탄성이 좋은 새로운 포장에서 구한 평탄성 데이터를 이용하여 구조해석을 수행함으로써 이러한 포장에서 차량이 주행할 때 동적 하중의 크기 변화를 비교 분석하였다. 그리고 차량속도와 표면 거칠기의 진폭 및 파장이 차량 동적 하중 크기에 미치는 영향을 가상의 평탄성 데이터를 구성하여 분석하였다. 이러한 표면 거칠기에 의한 동적 차량하중 크기의 증가는 포장의 응력 및 변형률에 영향을 미치며 궁극적으로 포장의 공용성과 연관되기 때문에 표면 거칠기와 포장의 공용성과의 관계를 유출하는 방법을 제시하였다

  • PDF

PHC Pile의 허용지지력 결정에 관한 연구 (A Study on The Decision of Allowable Bearing Capacity of PHC Piles)

  • 안종필;박주원;이광용
    • 한국지반공학회논문집
    • /
    • 제15권2호
    • /
    • pp.73-80
    • /
    • 1999
  • 지금까지 말뚝기초의 이론적인 연구에 있어 수직하중을 받는 말뚝기초의 극한지지력을 산정하는 것에 초점이 맞추어져 왔으며, 이를 위한 다양한 종류의 정적 및 동적 지지력 공식들이 말뚝기초의 극한지지력 산정을 위해 제안된 바 있다. 그러나 이들 공식의 적합성은 아직 확실하게 정립되지 못한 실정이며, 정역학적 및 동역학적 공식에 의한 지지력의 신뢰도는 말뚝재하시험에 의하여 확인되어지고 있다. 본 연구에서는 4개현장 12개소의 PHC Pile재하시험의 결과를 토대로 하여 정역학적 지지력 공식중의 하나인 Meyerhof공식과 동역학적 지지력공식중의 하나인 Hiley공식으로부터 산정된 두가지 극한지지력의 값과 비교\ulcorner분석하여 봄으로써, 설계시 허용지지력의 결정을 위해 사용되고 있는 각 공식의 적합성을 검토하여 보았다. 그 결과 표준관입시험의 N치를 적용한 Meyerhof공식에 의한 정역학적 방법에 있어 안전율 3.0을 적용함은 비교적 타당한 것으로 나타났고, 항타시험결과를 적용한 Hiley공식에 의한 방법에 있어 적용안전율을 5.0으로 조정함이 타당한 것으로 나타났으며, 추후 방대한 자료의 축적과 분석 및 연구를 통해 보다 합리적인 말뚝기초의 설계가 이루어져야 할 것으로 사료되었다.

  • PDF

통행차량에 의한 충격계수 산정방법 개선 (An Improvement for Impact Factor Determination to Traffic Loads)

  • 구봉근;류택은;이재범;류연종
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.217-224
    • /
    • 2002
  • This paper is proposed a reasonable method for determining the dynamic properties, the impact factors caused by traffic loads on highway bridges. In addition, the impact factors obtained in previous inspection reports were classified by the span length of the bridge, kind of bridge and type of bridge and the result of the impact factor was adjusted by a statistical method and presented problems. Also, the method for determining the impact factor using traffic load is proposed and the proposed method is compared with the specification code. The method estimating the impact factors due to the traffic loads can efficiently recognize the response of the structure by providing the impact factors and help to save the investigation cost, and also it can be used for the maintenance of structures using the usual test of bridges.

Dynamic Interface Crack Propagating Along a Line Between Two Holes

  • Lee, Ouk-Sub;Park, Jae-Chul;Yin, Hai-Long;Byun, Kwi-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.172-179
    • /
    • 2001
  • The effects of the interface and two holes located near the crack path in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system. The dynamic stress field around the dynamically propagating interface crack tip in the three point bending specimens under a dynamic load applied by a hammer dropped from 0.6m high without initial velocity are recorded. The complex stress intensity factors for the dynamically propagating interface crack are extracted by using a overdeterministic least square method. Theoretical dynamic interface isochromatic fringe loops generated by using the numerically determined complex stress intensity factors are compared with the experimental results. Furthermore, the influence of the hole to the dynamic interface crack velocities has been investigated experimentally.

  • PDF

초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구 (I) -기하학적 형상에 따른 동적 특성- (Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(I))

  • 조진구
    • 한국농공학회지
    • /
    • 제40권3호
    • /
    • pp.113-121
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form. Therefore, the stress analysis of thin shell has been one of the more challenging areas of structural mechanics. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical Shell. For these purpose, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic dynamic response. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows: 1. The dynamic characteristics with a/H, 1) As the a/H increases, the amplitude of displacement increased. 2) The values of displacement Dynamic Magnification Factor (DMF) range from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell range from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point of shell is increased gradually. 4) The values of DMF of hoop-stresses range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell range from 2.3 to 2.6, the values of DMF of stress were larger than that of displacement. 2. The dynamic characteristics with t/R, 1) With the decrease of thickness of shell decreses, the amplitude of the displacement and the period increased. 2) The values of DMF of the displacement were range from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were range from 2.1 to 2.2.

  • PDF

용접형 대차 프레임의 피로강도 보강에 관한 연구 (Reinforcement for Fatigue Fracture of Welded Bogie Frames)

  • 장득열;전형용
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.145-151
    • /
    • 2016
  • We consider the position and thickness of reinforcement with respect to fatigue fracture of welded bogie frames and propose an appropriate reinforcement method for many cases. The bogie frame is usually designed in accordance with JIS and KS, and operates under harsh load conditions: dynamic loads generated while driving, various loads during operation, and large load differences between loading and unloading. Consequently, fatigue failure often occurs throughout the bogie frame. We modelled the reinforcing method using ANSYS software and reviewed stress in the vicinity of common fatigue failure sites through computer simulation, optimizing the position and thickness of reinforcement.