• Title/Summary/Keyword: Dynamic geometry

Search Result 521, Processing Time 0.039 seconds

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Ahn, Tae-Su;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF

Generalized Hydrodynamic Computational Models for Diatomic Gas Flows (이원자 기체 유동 해석을 위한 일반유체역학 계산모델 개발)

  • Myong Rho-Shin;Cho Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.111-115
    • /
    • 2001
  • The study of nonlinear gas transport in rarefied condition or associated with the microscale length of the geometry has emerged as an interesting topic in recent years. Along with the DSMC method, several fluid dynamic models that come under the general category of the moment method or the Chapman-Enskog method have been used for this type of problem. In the present study, on the basis of Eu's generalized hydrodynamics, a computational model for diatomic gases is proposed. The preliminary result indicates that the bulk viscosity plays a considerable role in fundamental flow problems such as the shock structure and shear flow. The general properties of the constitutive equations are obtained through a simple mathematical analysis. With an iterative computational algorithm of the constitutive equations, numerical solutions for the multi-dimensional problem can be obtained.

  • PDF

Determination of the Principal Directions of Composite Helicopter Rotor Blades with Arbitrary Cross Sections

  • Oh, Taek-Yul;Choi, Myung-Jin;Yu, Yong-Seok;Chae, Kyung-Duck
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.291-297
    • /
    • 2000
  • Modern helicopter rotor blades with non-homogeneous cross sections, composed of anisotropic material, require highly sophisticated structural analysis because of various cross sectional geometry and material properties. They may be subjected by the combined axial, bending, and torsional loading, and the dynamic and static behaviors of rotor blades are seriously influenced by the structural coupling under rotating condition. To simplify the analysis procedure using one dimensional beam model, it is necessary to determine the principal coordinate of the rotor blade. In this study, a method for the determination of the principal coordinate including elastic and shear centers is presented, based upon continuum mechanics. The scheme is verified by comparing the results with confirmed experimental results.

  • PDF

Deformation of Polymer Resist in NIL Process by Molecular Dynamic Simulation (분자동역학기법을 이용한 나노 임프린트 리소그래피 공정에서의 고분자 변형모사)

  • Woo, Young-Seok;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.337-342
    • /
    • 2007
  • In this study, molecular dynamics simulation of nano imprint lithography in which patterned stamp is pressed onto amorphous polyethylene(PE) surface are performed to study the behaviour of polymer. Force fields including bond, angle, torsion, and Lennard Jones potential are used to describe the inter-molecular and intra-molecular force of PE molecules and stamp, substrate. Periodic boundary condition is used in horizontal direction and canonical NVT ensemble is used to control the system temperature. As the simulation results, the behaviour of polymer is investigated during the imprinting process. The mechanism of polymer deformation is studied by means of inspecting the surface shape, volume, density, atom distribution. Deformation of the polymer resist was found for various of the stamp geometry and the alignment state of the polymer molecules.

  • PDF

다이아몬드 공구를 사용한 선삭 가공에서의 표면 형상 예측

  • 윤영식;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.102-107
    • /
    • 1993
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the dimensional tolerances in the order of 10nm and surface roughness in the order of 1nm are the accuracytargets to be achieved today. Suchrequirements cannot be satisfiedby the conventional machining processes. Single point diamond turning is one of the new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting process with a diamond tool and, consequently, to develope a predicting modelof a turned surface profile. In order to predict the turned surface profile, a numerical model has been developed. By means of this model, the influences of the cutting conditions, the material properties of the workpiece, the geometry of the cutting tool and the dynamic behaviour of the lathe and their influences via the cutting forces upon the surface roughness have been estimated.

Dynamically equivalent element for an emboss embedded in a plate (평판의 국부적인 기하학적 변형을 모사하는 등가 요소 생성)

  • Song, Kyung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.301-305
    • /
    • 2002
  • Among many structural dynamics modification methods for plate and shell vibration problems, embedding an emboss to the surface is very efficient. But deciding an optimal position and shape using optimization algorithm needs defining geometry and remeshing the model for every iteration step to implement the method, which takes much numerical cost. An equivalent element produced here lessen the cost by representing the geometrical characteristics of an emboss using the element's material properties and thickness becoming a geometrically homogenous element of the base plate or shell. Some efficient factors which let the equivalent system have the same dynamical response as the original system embedded with emboss will be shown and the degree of equivalence will be tested in terms of natural frequency matching.

  • PDF

Optimum Design of a Micro-fluidic Oscillator (유체 진동자의 최적 설계)

  • 노유정;윤성기;김문언
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.22-30
    • /
    • 2004
  • A micro-fluidic oscillator is used to control a linear actuator in a dynamic microsystem. The pressure difference at its two output ports causes the linear actuator to move, and it is a standard of judging the performance of the oscillator. The performance can be improved by optimizing the geometry of the oscillator, which has to enable fluid jet to switch at low inlet velocity. For this, in this study the relationship between the pressure coefficient (difference) and geometric parameters is obtained through the analysis using the software FLUENT. From the results the optimized model that maximize the output pressure difference is obtained by using a cyclic coordinate method that is one of optimization methods. As a result not only the performance is improved, but also the working range is more widen.

Similitude Study of Performance of Lugged Wheel on Soft Soils (연약지(軟弱地)에서 상사성(相似性) 원리(原理)를 이용(利用)한 차륜(車輪)의 성능분석(性能分析)에 관한 연구(硏究))

  • Lee, K.S.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.220-229
    • /
    • 1993
  • A dimensional analysis was carried out to investigate if model agricultural radial tire can predict the tractive performance of prototype tires. Experimental data was analyzed to prove the results of dimensional analysis. The results was summerized as follows ; 1. When the model and prototype tires are tested under the same soil conditions, inflation pressure, slip and dynamic load, traction coefficient ratio between two tires depend on the geometry of two tires. 2. According to the regression analysis of the experimental data, traction equation parameters of the prototype tires can be predicted from the that of model tire 3. Predicted traction coefficient of prototype tire, calculated from the traction equation paramters, showed good correlation with that of experimental results. Thus it was possible to predict net and gross traction of prototype tire from the model traction equation parameters.

  • PDF

Comparison of elastic buckling loads for liquid storage tanks

  • Mirfakhraei, P.;Redekop, D.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • The problem of the elastic buckling of a cylindrical liquid-storage tank subject to horizontal earthquake loading is considered. An equivalent static loading is used to represent the dynamic effect. A theoretical solution based on the nonlinear Fl$\ddot{u}$gge shell equations is developed, and numerical results are found using the new differential quadrature method. A second solution is obtained using the finite element package ADINA. A major motivation of the study was to show that the new method can serve to verify finite element solutions for cylindrical shell buckling problems. For this purpose the paper concludes with a comparison of buckling results for a number of cases covering a wide range in tank geometry.

Direct frequency domain analysis of concrete arch dams based on FE-BE procedure

  • Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.363-376
    • /
    • 2007
  • A FE-BE procedure is presented for dynamic analysis of concrete arch dams. In this technique, dam body is discretized by finite elements, while foundation rock is handled by three dimensional boundary element formulation. This would allow a rigorous inclusion of dam-foundation rock interaction, with no limitations imposed on geometry of canyon shape. Based on this method, a previously developed program is modified, and the response of Morrow Point arch dam is studied for various ratios of foundation rock to dam concrete elastic moduli under an empty reservoir condition. Furthermore, the effects of canyon shape on response of dam, is also discussed.