• 제목/요약/키워드: Dynamic Surface Control

검색결과 370건 처리시간 0.029초

슬라이딩 모드 제어와 스위칭 기법에 기반한 수상함의 경로 추종 제어기 설계 (Path Tracking Controller Design for Surface Vessel Based on Sliding Mode Control Method with Switching Law)

  • 이준구
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.108-118
    • /
    • 2017
  • In this paper, the path tracking controller for a surface vessel based on the sliding mode control (SMC) with the switching law is proposed. In order to have no restriction on movement and improved tracking performance, the proposed control system is developed as follows: First, the kinematic and dynamic models in Cartesian coordinates are considered to solve the singularity problem at the origin. Second, the new multiple sliding surfaces are designed with the SMC and approach angle concept to solve the under-actuated property. Third, the switching control system is designed to improve tracking performance. To prove the stability of the proposed switching system under the arbitrary switching, the Lyapunov stability analysis method with the common Lyapunov function is used. Finally, the computer simulations are performed to demonstrate the performance, effectiveness and stability of the proposed tracking controller of a surface vessel.

차량동역학제어시스템 개발 (Development of Vehicle Dynamics Control System)

  • 김동신;신현성;박병석
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.212-219
    • /
    • 1999
  • This paper describes the NANDO VDC (Vehicle Dynamics Control) system for the vehicle stability enhancement and consists of the control strategies , computer simulation and tests on the various road surface. This VDC system controls the dynamic vehicle motion in the emergency situation such as the final oversteer/understeer andallows the vehicle to follow the course as desired by the driver. The system is based on an active yaw control and its performance verified by the test is shown. Also the comparison between the MANDO VDC System and a competitor is carried out.

  • PDF

공간전압벡터 PWM 기법을 이용한 영구자석형 동기전동기의 속도제 (Speed Control of Permanent Magnet Synchronous Motor Using Space voltage Vector PWM)

  • 윤덕용;홍순찬
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1112-1120
    • /
    • 1994
  • This paper presents a servo control scheme for the surface-mounted permanent-magnet synchronous motor(SPMSM) which essentially uses vector control algorithm. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM technique. The high-speed calculation and processing for vector control is carried out by TMS320C31 digital signal processor and IGBT module. The proposed scheme is verified through digital simulations and experiments for 2.2kW SPMSM and shows good dynamic performance.

  • PDF

Dynamic Performance Improvement of Oscillating Linear Motors via Efficient Parameter Identification

  • Kim, Gyu-Sik;Jeon, Jin-Yong;Yim, Chung-Hyuk
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.58-64
    • /
    • 2010
  • In this paper, the dynamic performance of oscillating linear motors, which are used in household refrigerators, is improved by means of efficient parameter identification. Oscillating linear motor parameters are identified as a function of the piston position and the motor current. They are stored in a ROM table and used later for an accurate estimation of piston position. The identified motor parameters are also approximated to the $2^{nd}$-order surface functions, which are divided into 2 or 4 subsections in order to decrease identification errors. Experimental results are given to show that the proposed control scheme can provide oscillating linear motors with high dynamic performance.

신경회로망을 이용한 이산 비선형 재형상 비행제어시스템 (Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks)

  • 신동호;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

절삭력 신호를 이용한 공구운동의 모델링과 고정도 표면생성에 관한 연구 (A study on the Modeling of Tool Motion and High Accuracy Surface Generation by Use of Cutting Force Signal)

  • 김정두;이은복
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1951-1962
    • /
    • 1993
  • The creation process of a typical machined surface is treated here as a dynamic system. An investigation is carried out to establish a relationship between the characteristics of cutting force fluctuations that cause vibration response of the tool-workpiece system and the formation of surface in face cutting by sintered carbide cutting tool. Cutting force is measured and analyzed in frequency domain. The power spectral densities of cutting force give a useful information in surface generation and it can be used to find out the control factor of surface roughness. The terms, PSD ratio & Normalized spindle frequency PSD, are defined and when the value of power in spindle frequency is absolutely little but relatively large, it is obtained high accuracy surface roughness. The aim of this research is to find surface profile by measured and analyzed cutting force signals. The simulation of surface generation gives the comprechension of its mechanism and help to predict and control the surface quality. In this study, it is suggested what informations about surface generation can be acquired from the cuttuing force signal and an way of generating a better surface.

불안정한 지면에서 발 내재근 강화운동이 유연성 편평발을 가진 성인의 균형능력과 발배뼈 높이에 미치는 효과 (The Effect of Intrinsic Foot Muscles Strengthening Exercise on the Balancing Ability and the Height of Navicular Bone in Adults with Flexible Flatfoot on Unstable Surface )

  • 이주현;김민석;신수빈;이찬영;채서연;홍유진;오세정
    • 대한물리의학회지
    • /
    • 제18권2호
    • /
    • pp.61-70
    • /
    • 2023
  • PURPOSE: This study evaluated an intrinsic foot strengthening exercise method for flat feet by comparing the effects of intrinsic exercises on a stable surface and intrinsic exercises on an unstable surface. METHODS: Twenty-four people with flat feet were divided into two groups. The control group performed short foot exercises and toe towel curl exercises on the stable support surface. The experimental group performed short foot exercises and toe towel curl exercises on an unstable support surface using Aerostep. The navicular drop test, and the static and dynamic balance were measured before and after the intervention. RESULTS: In the experimental and control groups, there was a significant difference in the navicular drop test and static balance before and after the intervention (p < .05). On the other hand, there was no significant difference between the two groups (p > .05). In the dynamic balance, the experimental group showed significant differences in all directions after the intervention (p < .05). The control group showed significant differences in the postero-lateral direction and posteromedial direction (p < .05). In particular, in the forward direction, the experimental group had a more significant change than the control group (p < .05). CONCLUSION: Intrinsic foot muscle strengthening exercises performed on unstable surfaces can be an effective clinical exercise method to improve the dynamic balance ability of people with flat feet.

동작관찰훈련이 만성 뇌졸중 환자의 하지 근 활성도 및 동적 균형에 미치는 영향 (The Effects of Action Observation Training on Lower Limb Muscle Activity and Dynamic Balance in Chronic Stroke Patients)

  • 김재운;손영란;김용남
    • PNF and Movement
    • /
    • 제17권2호
    • /
    • pp.245-252
    • /
    • 2019
  • Purpose: The purpose of this study was to determine the effects of action observation training on lower limb muscle activity and dynamic balance in chronic stroke patients. Methods: This study evaluated 20 chronic stroke patients who were divided randomly into a control and an experimental group comprising 10 patients each. Both the experimental group and the control group performed the general exercise therapy provided by the hospital, but the experimental group also performed action observation training. Lower limb muscle activity was measured with a surface electromyograph, and dynamic balance was measured with the Timed Up and Go test and the 10-meter walk test. The paired t-test was used to compare the groups before and after the experiment. Furthermore, the independent t-test was used to assess differences in the degree of change between the two groups before and after the experiment. Results: The within-group comparisons for both the experimental group and the control group showed significant differences in muscle activity and dynamic balance (p<0.05). In a comparison between the groups, the differences in the muscle activity and dynamic balance of the experimental group appeared significant compared with those of the control group (p<0.05). Conclusion: The study results indicate that action observation training is effective in improving the muscle activity and dynamic balance of chronic stroke patients.

수상선박의 위치 및 자세제어시스템 설계에 관한 연구 : 강인제어기법에 의한 관측기 설계 (Dynamic Positioning Control System Design for Surface Vessel: Observer Design Based on H Control Approach)

  • 김영복
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1171-1179
    • /
    • 2012
  • 본 논문에서는 선박운동제어를 위한 제어시스템 설계문제에 대해 고찰한다. 특히 강인한 추종성능을 가진 2자유도 서보계 설계법을 이용하여 선박의 위치 및 자세제어를 위한 제어기를 설계하고, 실험 등의 실제적인 제어시스템 구축시 센서로부터 모든 정보를 획득할 수 없으므로 이에 필요한 상태를 추정하기 위한 관측기 설계 문제에 대해 고려하고 있다. 그래서 본 논문에서는 실제 상태정보와 추정된 상태정보와의 오차를 최소화하도록 $H_{\infty}$ 오차 바운드를 설정하는 기법으로 관측기의 이득을 구한다. 특히 $H_{\infty}$ 오차 바운드를 만족하는 관측기가 존재하기 위한 조건을 LMI형식으로 변환하여 표현함으로써 관측기 이득 계산을 효율적으로 수행하여 최적의 이득을 구할 수 있음을 보이고 시뮬레이션을 통해 그 유용성을 확인한다.

레일연마에 따른 고속철도 레일 피로수명 평가 (Evaluation of Rail Fatigue Life by Rail Grinding in the High Speed Railway)

  • 박원서;임형준;박용걸;성덕룡;강윤석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.783-792
    • /
    • 2011
  • The control of rail surface irregularity is very important for the high speed train service in the high speed rail. In order to manage it, initial, preventative, and maintainable rail grinding have been performed and among them, preventative rail grinding conducts in every each year. This study carried out the field test for dynamic track response according to rail surface irregularity comparing before and after rail grinding. In addition, the change of dynamic track responses according to rail grinding was analyzed and the fatigue life was estimated though Rainflow Counting Method and RMC Equivalence Stress. Therefore, it suggested that rail fatigue life should be increased by rail grinding, because amount of impact occurred on track is decreased by getting rid of rail surface irregularity.

  • PDF