• Title/Summary/Keyword: Dynamic Structural Framework

검색결과 92건 처리시간 0.024초

Failure Modeling of Bridge Components Subjected to Blast Loading Part I: Strain Rate-Dependent Damage Model for Concrete

  • Wei, Jun;Quintero, Russ;Galati, Nestore;Nanni, Antonio
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.19-28
    • /
    • 2007
  • A dynamic constitutive damage model for reinforced concrete (RC) structures and formulations of blast loading for contact or near-contact charges are considered and adapted from literatures. The model and the formulations are applied to the input parameters needed in commercial finite element method (FEM) codes which is validated by the laboratory blast tests of RC slabs from literature. The results indicate that the dynamic constitutive damage model based on the damage mechanics and the blast loading formulations work well. The framework on the dynamic constitutive damage model and the blast loading equations can therefore be used for the simulation of failure of bridge components in engineering applications.

Structural reliability analysis using temporal deep learning-based model and importance sampling

  • Nguyen, Truong-Thang;Dang, Viet-Hung
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.323-335
    • /
    • 2022
  • The main idea of the framework is to seamlessly combine a reasonably accurate and fast surrogate model with the importance sampling strategy. Developing a surrogate model for predicting structures' dynamic responses is challenging because it involves high-dimensional inputs and outputs. For this purpose, a novel surrogate model based on cutting-edge deep learning architectures specialized for capturing temporal relationships within time-series data, namely Long-Short term memory layer and Transformer layer, is designed. After being properly trained, the surrogate model could be utilized in place of the finite element method to evaluate structures' responses without requiring any specialized software. On the other hand, the importance sampling is adopted to reduce the number of calculations required when computing the failure probability by drawing more relevant samples near critical areas. Thanks to the portability of the trained surrogate model, one can integrate the latter with the Importance sampling in a straightforward fashion, forming an efficient framework called TTIS, which represents double advantages: less number of calculations is needed, and the computational time of each calculation is significantly reduced. The proposed approach's applicability and efficiency are demonstrated through three examples with increasing complexity, involving a 1D beam, a 2D frame, and a 3D building structure. The results show that compared to the conventional Monte Carlo simulation, the proposed method can provide highly similar reliability results with a reduction of up to four orders of magnitudes in time complexity.

Wind-induced lateral-torsional coupled responses of tall buildings

  • Wu, J.R.;Li, Q.S.;Tuan, Alex Y.
    • Wind and Structures
    • /
    • 제11권2호
    • /
    • pp.153-178
    • /
    • 2008
  • Based on the empirical formulas for power spectra of generalized modal forces and local fluctuating wind forces in across-wind and torsional directions, the wind-induced lateral-torsional coupled response analysis of a representative rectangular tall building was conducted by setting various parameters such as eccentricities in centers of mass and/or rigidity and considering different torsional to lateral stiffness ratios. The eccentricity effects on the lateral-torsional coupled responses of the tall building were studied comprehensively by structural dynamic analysis. Extensive computational results indicated that the torsional responses at the geometric center of the building may be significantly affected by the eccentricities in the centers of mass and/or rigidity. Covariance responses were found to be in the same order of magnitude as the along-wind or across-wind responses in many eccentricity cases, suggesting that the lateral-torsional coupled effects on the overall wind-induced responses can not be neglected for such situations. The calculated results also demonstrated that the torsional motion contributed significantly to the total responses of rectangular tall buildings with mass and/or rigidity eccentricities. It was shown through this study that the framework presented in this paper provides a useful tool to evaluate the wind-induced lateral-torsional coupled responses of rectangular buildings, which will enable structural engineers in the preliminary design stages to assess the serviceability of tall buildings, potential structural vibration problems and the need for a detailed wind tunnel test.

네트워크 기업의 정보기술 아키텍처 프레임워크 연구 (A Study on ITA(Information Technology Architecture) Framework for Networked Enterprises)

  • 김덕현
    • 한국IT서비스학회지
    • /
    • 제7권4호
    • /
    • pp.45-60
    • /
    • 2008
  • Networked enterprise (NE) is an organization of independent companies that collaborate with each other temporary or permanently for accomplishing common goals. The USA and EU have been developing principal concepts, techniques, and solutions to enhance the competitiveness of traditional industries including small-and-medium enterprises (SMEs). In Korea, however, implementation as well as R&D of NE is very few, which we believe comes from lack of understanding on Its meaning and lack of effective information systems for it. This paper is to suggest an Enterprise Architecture (EA) framework or reference model of NE and an Information Technology Architecture (ITA) of NE. The EA framework will help stakeholder of NE (e,g., policy makers, members of NE, IT solution providers, and researchers) understand structural and behavioral characteristics of NE. The ITA will be used as a guideline of developing information systems for NE that is essential for spreading networked business models, The focus of this paper is not on logical-level design but on conceptual-level modeling of NE. As verification of the suggested framework and architecture is still required, so we'll apply them to various manifestations of NE, e.g., dynamic supply chain, vertical integration of extended enterprises, and P2P-style virtual enterprises.

Application of BIM-integrated Construction Simulation to Construction Production Planning

  • Chang, SooWon;Son, JeongWook;Jeong, WoonSeong;Yi, June-Seong
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.639-640
    • /
    • 2015
  • Traditional construction planning based on historical data and heuristic adjustment can no longer incorporate all the operational details and guarantee the expected performance. The variation between the expected and the actual production leads to cost overruns or delay. Although predicting reliable productivity on construction site is getting more important, the difficulty of this increases. In this regard, this paper suggested to develop BIM-integrated simulation framework. This framework could predict productivity dynamics by considering factors affecting on construction productivity at operational phase. We developed the following processes; 1) enabling a BIM model to produce input data for simulation; 2) developing the construction operation simulation; 3) running simulation using BIM data and obtaining productivity results. The BIM-integrated simulation framework was tested with structural steel erection model because steel erection work is one of the most critical process influencing on the whole construction budget and duration. We could improve to predict more dynamic productivity from this framework, and this reliable productivity helps construction managers to optimize resource allocation, increase schedule reliability, save storage cost, and reduce material loss.

  • PDF

Exchange Rate and Interest Rate Dynamics in an Equilibrium Framework

  • Chung S. Young
    • 재무관리논총
    • /
    • 제6권1호
    • /
    • pp.335-356
    • /
    • 2000
  • This paper examines the time series dynamics of spot and forward exchange rates and Eurocurrency deposit rates for four bilateral relationships vis a vis the U.S. dollar using daily data. The equilibrium implied by covered interest parity provides a theoretical foundation from which to estimate and analyze the dynamic properties of each system of exchange rates and interest rates. The structural statistical model is identified by relying on the implied cointegration vectors and long-run neutrality restrictions.

  • PDF

Metamodeling of nonlinear structural systems with parametric uncertainty subject to stochastic dynamic excitation

  • Spiridonakos, Minas D.;Chatzia, Eleni N.
    • Earthquakes and Structures
    • /
    • 제8권4호
    • /
    • pp.915-934
    • /
    • 2015
  • Within the context of Structural Health Monitoring (SHM), it is often the case that structural systems are described by uncertainty, both with respect to their parameters and the characteristics of the input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a fast and reliable computation of structural response while taking these uncertainties into account. In this work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear structural systems subjected to earthquake excitation. The introduced metamodeling method is based on Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, which are moreover characterized by random parameters utilized for the description of the uncertainty propagation. These random parameters, which include characteristics of the input excitation, are expanded onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation is fully described through a small number of deterministic coefficients of projection. The effectiveness of the proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed linear elastic region. The added contribution of the introduced scheme is the ability of the proposed methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast reduction of the required computational toll.

High-frequency force balance technique for tall buildings: a critical review and some new insights

  • Chen, Xinzhong;Kwon, Dae-Kun;Kareem, Ahsan
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.391-422
    • /
    • 2014
  • The high frequency force balance (HFFB) technique provides convenient measurements of integrated forces on rigid building models in terms of base bending moments and torque and/or base shear forces. These base moments or forces are then used to approximately estimate the generalized forces of building fundamental modes with mode shape corrections. This paper presents an analysis framework for coupled dynamic response of tall buildings with HFFB technique. The empirical mode shape corrections for generalized forces with coupled mode shapes are validated using measurements of synchronous pressures on a square building surface from a wind tunnel. An alternative approach for estimating the mean and background response components directly using HFFB measurements without mode shape corrections is introduced with a discussion on higher mode contributions. The uncertainty in the mode shape corrections and its influence on predicted responses of buildings with both uncoupled and coupled modal shapes are examined. Furthermore, this paper presents a comparison of aerodynamic base moment spectra with available data sets for various tall building configurations. Finally, e-technology aspects in conjunction with HFFB technique such as web-based on-line analysis framework for buildings with uncoupled mode shapes used in NALD (NatHaz Aerodynamic Loads Database) is discussed, which facilitates the use of HFFB data for preliminary design stages of tall buildings subject to wind loads.

요소 연결 매개법을 이용한 선형 구조물의 동적 컴플라이언스 최적화 (Element Connectivity Based Topology Optimization for Linear Dynamic Compliance)

  • 윤길호
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.259-265
    • /
    • 2009
  • 본 연구 논문에서는 요소 연결 매개법(Element Connectivity Parameterization Method)을 이용하여 선형 구조물의 동적 컴플라이언스(Dynamic compliance)를 최소화하는 위상을 설계하는 기법을 연구한다. 기존의 밀도를 기반으로 한 위상최적화기법은 각 유한 요소의 탄성계수를 각 요소에 정의되어 있는 설계변수(Design Variable)를 이용하여 위상최적화를 수행한다. 이 방법은 현재까지 많은 선형구조문제에 적용되었지만 비선형 문제와 멀티피직스 시스템에서 수치적인 문제점이 보고되었다. 이런 문제점을 근본적으로 해결하기 위하여 최근에 요소 연결 매개법(Element Connectivity Parameterization Method)이란 새로운 최적화 기법이 개발되었다. 이 새로운 설계 방법은 요소의 강성을 설계하는 것이 아니라 요소의 연결성을 설계하는 기법으로 이를 이용하여 비선형 구조물이나 멀티피직스 시스템의 위상최적화를 효과적으로 수행할 수 있다. 하지만, 아직까지 질량 행렬의 정의에 대한 모호함으로 인하여 동적인 구조물의 최적화에 대한 연구가 많이 이루어지지 않았다. 이런 문제점을 해결하기 위하여 요소 연결 매개법에서 질량행렬을 정의하는 방법을 연구하며, 이를 이용하여 선형 구조물의 동적 컴플라이언스(Dynamic Compliance)를 고려한 위상최적화 문제에 적용하여 제안된 방법을 검증하였다.

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.