• Title/Summary/Keyword: Dynamic Stress History

Search Result 95, Processing Time 0.021 seconds

A Study on Dynamic Analysis and Fatigue Life of the Belt in the OHT Vehicle (OHT 차량 벨트 동특성 및 피로 수명에 관한 연구)

  • Jung Il-Ho;Kim Chang-Su;Cho Dong-Hyeob;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1085-1092
    • /
    • 2005
  • The OHT(Over Head Transportation) Vehicle transports heavy products quickly and repeatedly at the industrial workplace. The belt in the OHT vehicle is used to support the weight of the OHT Cage. The fatigue of the belt is caused by the dynamic load during the operation time. Since the fatigue fracture of the belt affects the safety at the workplace, the correct prediction of the dynamic load is necessary to calculate the fatigue life of the belt on the design step. In this paper a computer aided analysis method is proposed for the belt in the early design stage using dynamic analysis, stress analysis, belt tensile test, belt fatigue test and fatigue lift prediction method. From the dynamic load time histories and the stress of the belt FE model, a dynamic stress time history is produced. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The method developed in this paper is used to reduce the time and cost for designing the OHT belt in different environment and condition.

Dynamic Stress Analysis of Vehicle Frame Using a Nonlinear Finite Element Method

  • Kim, Gyu-Ha;Cho, Kyu-Zong;Chyun, In-Bum;Park, Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1450-1457
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of durability, noise/vibration/harshness (NVH), crashworthiness and passenger safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the Virtual Proving Ground (VPG) approach for obtaining the dynamic stress or strain history and distribution. The VPG uses a nonlinear, dynamic, finite element code (LS-DYNA) which expands the application boundary outside classic linear, static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic stress and fatigue critical region, a single bump run test, road load simulation, and field test have been performed. The prediction results were compared with experimental results, and the feasibility of the integrated life prediction methodology was verified.

A Study on the Methodology for Determining Dynamic Loadings of Automotive Suspension System Using Measurement and Modeling

  • 김호용;이재곤;박용국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.262-271
    • /
    • 1999
  • To design suspension system and estimate its durability , the loading history of each suspension part exposed to various operation conditions should be known from either measurement or computations. Based on these results, stress analysis is carried out to obtain the optimal shape and to reduce the production cost through the proper selection of manufacturing process. In this paper, first the measurement of 3-directional accelerations of wheel center using an accelerometer are undertaken from a vehicle running on Belgian road. Then the data measured from experiments are pre-processed with filtering . Based on the pre-processed data the methodology for determining the dynamic loading to each suspension part is developed by simply modeling the suspension system with ADAMS software. Eventually , it is expected that dynamic loadings can be used for the dynamic stress and fatigue analyses.

  • PDF

Thermal Elastic-Plastic Analysis of Strength Considering Temperature Rise due to Plastic Deformation by Dynamic Leading in Welded Joint (동적하중하에서의 용접이음부의 강도적특성에 대한 온도상승을 고려한 열탄소성 해석)

  • 안규백;망월정인;대전흉;방한서;농전정남
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.68-77
    • /
    • 2003
  • It is important to understand the characteristics of material strength and fracture under the dynamic loading like as earthquakes to assure the integrity of welded structures. The characteristics of dynamic strength and fracture in structural steels and their welded joints should be evaluated based on the effects of the strain rate and the service temperature. It is difficult to predict or measure temperature rise history with the corresponding stress-strain behavior. In particular, material behaviors beyond the uniform elongation can not be precisely evaluated, though the behavior at large strain region after the maximum loading point is much important for the evaluation of fracture. In this paper, the coupling phenomena of temperature and stress-strain fields under the dynamic loading was simulated by using the finite element method. The modified rate-temperature parameter was defined by accounting for the effect of temperature rise under the dynamic deformation, and it was applied to the fully-coupled analysis between heat conduction and thermal elastic-plastic behavior. Temperature rise and stress-strain behavior including complicated phenomena were studies after the maximum loading point in structural steels and their undermatched joints and compared with the measured values.

Prediction of Fatigue Life Using Dynamic Simulation and Finite Element Anlaysis for Construction Equipment (중장비의 동적시뮬레이션과 유한요소법을 이용한 피로수명에측)

  • Kwon, Soon-Ki;Park, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1392-1400
    • /
    • 1996
  • The need of companies shorten the design-to-manufacturing process for new products with improved quality in cost effective manner places increasing demends on engineers to simulate the performance characteristics of a design before it is built of a prototype is developed. For theses demands CAE(Computer-Aided Engineering) offers engineers not only giving confidence of their design but also eliminating potential errors due totesting prototypes in small numbers. This paper present the method to predict the fatigue life using dynamics simulation and FEA(Finite Element Analysis) for construciton equipment in the computer before building prototype. The dynamicsimulatio is to get the load-time history corresponding to the maneuvering and driving of the construction equipment. The FEA is to build a model of the structure and then analyse to define the local stress response to applied loadings using linear static analysis.

A New Assessment of Liquefaction Potential Based on the Dynamic Test (진동시험에 기초한 액상화 상세예측법 개발)

  • Kim, Soo-Il;Choi, Jae-Soon;Kang, Han-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.245-252
    • /
    • 2004
  • When some enormous earthquake hazards broke out in the neighboring Japan and Taiwan, many Korean earthquake engineers thought that seismic guidelines must be adjusted safely and economically to consider the moderate earthquake characteristics. In the present aseismic guideline for liquefaction potential assessment, a simplified method using SPT-N value and a detail method based on the dynamic lab-tests were introduced. However, it is said that these methods based on the equivalent stress concept to simplify an irregular earthquake are not reliable to simulate the kaleidoscopical characteristics of earthquake loading correctly. Especially, even though various data from the dynamic lab-test can be obtained, only two data, a maximum cyclic load and a number of cycle at an initial liquefaction are used to determine the soil resistance strength in the detailed method. In this study, a new assessment of liquefaction potential is proposed and verified. In the proposed assessment, various data from dynamic lab-tests are used to determine the unique soil resistance characteristic and a site specific analysis is introduced to analyze the irregular earthquake time history itself. Also, it is found that the proposed assessment is reasonable because it is devised to reflect the changeable soil behavior under dynamic loadings resulted from the generation and development of excess pore water pressure.

  • PDF

Analysis of the Degree of Fatigue Damage in Truss Railway Bridge by Actual Stress and Simulation (실측응력 및 시뮬레이션에 의한 트러스 철도교의 피로피해도 분석)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Kim, eun-sung
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.149-158
    • /
    • 2000
  • After measuring actual stress by two measurements(Dynamic Strain Meter, Histogram Recorder) on truss rail road bridge, we could perform time history analysis by 3-D beam element method on modelling bridge. And then, after analyzing bridge structure in static by 3-D modelling, we estimated degree of fatigue damage in main member, secondary member of tie zone, cutting area of base metal cross section for confirming the result. In case that the simulated stress is carried out on modeling bridge, most of those simulation mainly is performed by main members. But in real bridge fatigue damage problems generally caused by junctions, connections, joints in which especially local stress is activated. Therefore, in this paper actual stress on critical area was estimated through the analysis result by simulation. With this study, we can estimate the degree of fatigue damage from a safety point of view and comparative accuracy.

  • PDF

Size dependent vibration of laminated micro beams under moving load

  • S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.253-261
    • /
    • 2023
  • The goal of this paper is to investigate dynamic responses of simply-supported laminated micro beams under moving load. In the considered micro-scale problem, the modified coupled stress theory which includes the length scale parameter is used. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of stacking sequence of laminas, fibre orientation angles and the length scale parameter on the dynamic responses of laminated micro beams are examined and discussed.

Development of Simulation System for Front Attachment of Excavator (굴삭기 작업장치의 해석시스템 개발)

  • Gwon, Sun-Gi;Park, Hyeong-Jin;Kim, Hyeong-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1401-1410
    • /
    • 1996
  • This paper present a method to predict fatigue life of a construction equipment performing static stress analysis and dynamic stress analysis using the computer simulation for proto and pilot type model. The parameter of design variable is used for finite elemt modeling of a excavator. Desinger can design reliable product and shorten lead time by using "Simulation System for Front Attachment of Excavator" develped in this study.his study.

Study on seismic performance of steel frame with archaized-style under pseudo-dynamic loading

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2019
  • This paper presents an experimental study on a 1/2 scale steel frame with archaized-style under the pseudo-dynamic loading. Four seismic waves, including El Centro wave, Taft wave, Lanzhou wave and Wenchuan wave, were input during the test. The hysteresis characteristic, energy dissipation acceleration response, displacement response, strength, stiffness and strain were analyzed. Based on the experiment, the elastoplastic dynamic time-history analysis was carried out with the software ABAQUS. The stress distribution and failure mode were obtained. The results indicate that the steel frame with archaized-style was in elastic stage when the peak acceleration of input wave was no more than 400 gal. Under Wenchuan wave with peak acceleration of 620 gal, the steel frame enters into the elastoplastic stage, the maximum inter-story drift was 1/203 and the bearing capacity still tended to increase. During the loading process, Dou-Gong yielded first and played the role of the first seismic fortification line, and then beam ends and column bottom ends yielded in turn. The steel frame with archaized-style has good seismic performance and meets the seismic design requirement of Chinese code.