DOI QR코드

DOI QR Code

Size dependent vibration of laminated micro beams under moving load

  • S.D. Akbas (Department of Civil Engineering, Bursa Technical University)
  • Received : 2022.05.17
  • Accepted : 2022.10.31
  • Published : 2023.01.25

Abstract

The goal of this paper is to investigate dynamic responses of simply-supported laminated micro beams under moving load. In the considered micro-scale problem, the modified coupled stress theory which includes the length scale parameter is used. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of stacking sequence of laminas, fibre orientation angles and the length scale parameter on the dynamic responses of laminated micro beams are examined and discussed.

Keywords

References

  1. Abadi M.M. and Daneshmehr A.R. (2014), "An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 75, 40-53. https://doi.org/10.1016/j.ijengsci.2013.11.009.
  2. Abdelrahman, A.A., Abd El Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765-779. https://doi.org/10.12989/sem.2020.76.6.765.
  3. Akbas, S.D. (2013), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trends Technol., 4(10), 4590-4597.
  4. Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
  5. Akbas, S.D. (2016), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143.
  6. Akbas, S.D. (2018a), "Nonlinear thermal displacements of laminated composite beams", Coupl. Syst. Mech., 7(6), 691-705.  https://doi.org/10.12989/csm.2018.7.6.691
  7. Akbas, S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech. 66(1), 27-36.  http://doi.org/10.12989/sem.2018.66.1.027.
  8. Akbas, S.D. (2018c), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. http://doi.org/10.12989/scs.2018.26.6.733.
  9. Akbas, S.D. (2018d), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech, 67(4), 337-346.  http://dx.doi.org/10.12989/sem.2018.67.4.337.
  10. Akbas, S.D. (2019a), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.
  11. Akbas, S.D. (2019b), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. http://dx.doi.org/10.12989/sem.2019.72.4.433.
  12. Akbas, S.D. (2019c), "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328.
  13. Akbas, S.D. (2019d), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 5(2), 477-485. https://doi.org/10.22059/JCAMECH.2019.281285.392.
  14. Akbas, S.D. (2020a), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
  15. Akbas, S.D. (2020b), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
  16. Akbas, S.D. (2020c), "Dynamic analysis of a laminated composite beam under harmonic load", Coupl. Syst. Mech., http://doi.org/10.12989/csm.2020.9.6.563.
  17. Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
  18. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
  19. Alazwari, M.A., Abdelrahman, A.A., Wagih, A., Eltaher, M.A. and Abd-El-Mottaleb, H.E. (2021), "Static analysis of cutout microstructures incorporating the microstructure and surface effects", Steel Compos. Struct., 38(5), 583-597. https://doi.org/10.12989/scs.2021.38.5.583.
  20. Alimoradzadeh M. and Akbas S.D. (2021a), "Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory", Europ. Phys. J. Plus, 136, 536. https://doi.org/10.1140/epjp/s13360-021-01539-0.
  21. Alimoradzadeh, M., Akbas, S.D. and Esfrajani, S.M. (2021b), "Nonlinear dynamic and stability of a beam resting on the nonlinear elastic foundation under thermal effect based on the finite strain theory", Struct. Eng. Mech., 80(3), 275-284. https://doi.org/10.12989/sem.2021.80.3.275.
  22. Alimoradzadeh M. and Akbas S.D. (2022a), "Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam", Adv. Nano Res., 12(4), 353-363. https://doi.org/10.12989/anr.2022.12.4.353.
  23. Alimoradzadeh M. and Akbas S.D. (2022b), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
  24. Alimoradzadeh M. and Akbas S.D. (2022c), "Nonlinear dynamic responses of cracked atomic force microscopes", Struct. Eng. Mech., 82(6), 747-756. https://doi.org/10.12989/sem.2022.82.6.747.
  25. Arani, A.G., Navi, B.R. and Mohammadimehr, M. (2021), "Buckling and vibration of porous sandwich microactuatormicrosensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets", Steel Compos. Struct., 41(6), 805-820. https://doi.org/10.12989/scs.2021.41.6.805.
  26. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.
  27. Asghari M., Ahmadian M.T., Kahrobaiyan M.H. and Rahaeifard M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-2329. https://doi.org/10.12989/scs.2017.64.5.527.
  28. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257. https://doi.org/10.12989/anr.2018.6.3.257.
  29. Bhattacharya, S. and Das, D. (2019), "Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory", Compos. Struct., 215, 471-492. .https://doi.org/10.1016/j.compstruct.2019.01.080.
  30. Chaht F.L., Kaci A., Houari M.S.A., Tounsi A., Beg O.A. and Mahmoud S.R., (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  31. Chen W. J. and Li, X.P. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Archive Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2.
  32. Dong Y.H., Zhang Y.F. and Li Y.H. (2017), "An analytical formulation for postbuckling and buckling vibration of microscale laminated composite beams considering hygrothermal effect", Compos. Struct., 170, 11-25. https://doi.org/10.1016/j.compstruct.2017.02.093.
  33. Ebrahimi, F. and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65. https://doi.org/10.12989/anr.2016.4.2.065.
  34. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024.
  35. Funari, M.F., Greco, F. and Lonetti, P. (2016), "A cohesive finite element model based ALE formulation for z-pins reinforced multilayered composite beams", Procedia Struct. Integrity, 2, 452-459. https://doi.org/1016/j.prostr.2016.06.05910. 1016/j.prostr.2016.06.05910
  36. Funari, M.F. and Lonetti, P. (2017), "Initiation and evolution of debonding phenomena in layered structures", Theoretic. Appl. Fract. Mech., 92, 133-145. https://doi.org/1016/j.tafmec.2017.05.030. 1016/j.tafmec.2017.05.030
  37. Ghayesh M.H., Farokhi H. and Amabili, M. (2013), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021.
  38. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013), "Coupled nonlinear size-dependent behaviour of microbeams", Appli. Phys. A, 112(2), 329-338. https://doi.org/10.1007/s00339-013-7787-z.
  39. Ghayesh, M.H. and Amabili, M. (2014), "Coupled longitudinaltransverse behaviour of a geometrically imperfect microbeam", Compos. Part B: Eng., 60, 371-377. https://doi.org/10.1016/j.compositesb.2013.12.030.
  40. Ghayesh, M.H. (2018a), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dyn., 13(2). https://doi.org/10.1115/1.4037596.
  41. Ghayesh, M.H. (2018b), "Mechanics of tapered AFG sheardeformable microbeams", Microsyst. Technol., 24(4), 1743- 1754. https://doi.org/10.1007/s00542-018-3764-y.
  42. Ghayesh, M.H. (2019), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974.
  43. Hosseini Hashemi, S. and Bakhshi Khaniki, H. (2017), "Free vibration analysis of nonuniform microbeams based on modified couple stress theory: an analytical solution", Int. J. Eng., 30(2), 311-320. https://doi.org/10.5829/idosi.ije.2017.30.02b.19.
  44. Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017
  45. Hussain, M. (2020), "Application of Kelvin's approach for material structure of CNT: Polynomial volume fraction law", Struct. Eng. Mech., 76(1), 129-139. https://doi.org/10.12989/sem.2020.76.1.129
  46. Jouneghani, F.Z., Dashtaki, P.M., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2018), "First-order shear deformation theory for orthotropic doubly-curved shells based on a modified couple stress elasticity", Aeros. Sci. Technol., 73, 129-147. https://doi.org/10.1016/j.ast.2017.11.045.
  47. Jouneghani, F.Z., Babamoradi, H., Dimitri, R. and Tornabene, F. (2020), "A modified couple stress elasticity for non-uniform composite laminated beams based on the Ritz formulation", Molecules, 25(6), 1404. https://doi.org/10.3390/molecules25061404.
  48. Karlicic D., Cajic M., Murmu T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled doublenanorod systems", Europ. J. Mech.-A/Solids, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.
  49. Ke L.L., Wang Y.S., Yang J. and Kitipornchai S., (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. .https://doi.org/10.1016/j.ijengsci.2010.12.008
  50. Khaniki H.B., Hosseini-Hashemi S. and Nezamabadi A. (2018), "Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method", Alexandria Eng. J., 57(3), 1361-1368. https://doi.org/10.1016/j.aej.2017.06.001.
  51. Kheroubi, B., Benzair, A., Tounsi, A. and Semmah, A. (2016), "A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams", Adv. Nano Res., 4(4), 251. https://doi.org/10.12989/anr.2016.4.4.251.
  52. Kirlangic, O. and Akbas, S.D. (2020), "Comparison study between layered and functionally graded composite beams for static deflection and stress analyses", J. Comput. Appl. Mech., 51(2), 294-301. https://doi.org/10.22059/JCAMECH.2020.296319.473.
  53. Kirlangic, O. and Akbas, S.D. (2021), "Dynamic responses of functionally graded and layered composite beams", Smart Struct. Syst., 27(1), 115-122. https://doi.org/10.12989/sss.2021.27.1.115.
  54. Lal, R. and Dangi, C. (2019), "Thermomechanical vibration of bidirectional functionally graded non-uniform timoshenko nanobeam using nonlocal elasticity theory", Compos. Part B: Eng., 172, 724-742. https://doi.org/10.1016/j.compositesb.2019.05.076.
  55. Liu, P. and Reddy, J.N. (2011), "A Nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stab. Dyn., 11(3), 495-512. https://doi.org/10.1142/S0219455411004233.
  56. Mohammadabadi, M., Daneshmehr A.R. and Homayounfard, M. (2015), "Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory", Int. J. Eng. Sci., 92, 47-62. https://doi.org/10.1016/j.ijengsci.2015.03.005.
  57. Nguyen, N.D., Nguyen, T.K., Thai, H.T. and Vo, T.P. (2018), "A Ritz type solution with exponential trial functions for laminated composite beams based on the modified couple stress theory", Compos. Struct., 191, 154-167. https://doi.org/10.1016/j.compstruct.2018.02.025.
  58. Priyanka, R. and Pitchaimani, J. (2021), "Static stability and free vibration characteristics of a micro laminated beam under varying axial load using modified couple stress theory and Ritz method", Compos. Struct., 115028. https://doi.org/10.1016/j.compstruct.2021.115028
  59. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  60. Roque, C.M.C., Fidalgo, D.S., Ferreira, A.J.M. and Reddy, J.N. (2013), "A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method", Compos. Struct., 96, 532-537. https://doi.org/10.1016/j.compstruct.2012.09.011.
  61. Romano, J. and Reddy, J.N. (2014), "Experimental validation of the modified couple stress Timoshenko beam theory for webcore sandwich panels", Compos. Struct., 111, 130-137. https://doi.org/10.1016/j.compstruct.2013.11.029.
  62. Wang, C.M., Xiang, Y., Yang, J. and Kitipornchai, S. (2012), "Buckling of nano-rings/arches based on nonlocal elasticity", Int. J. Appl. Mec., 4(03), 1250025. https://doi.org/10.1016/10.1142/S1758825112500251.
  63. Yang, F., Chong, A., Lam, D. and Tong, P., (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  64. Taj, M., Khadimallah, M.A., Hussain, M., Mahmood, S., Safeer, M., Rashid, Y. and Tounsi, A. (2021), "Instability analysis of microfilaments with and without surface effects using Euler theory", Adv. Nano Res., 10(6), 509-516. https://doi.org/10.12989/anr.2021.10.6.509.
  65. Tlidji, Y., El-Dalabeeh, A.R.K., Al-Olimat, N.H. And Al Shbail, M.O. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  66. Yayli, M.O., Yerel Kandemir, S. and Cercevik, A.E. (2016), "A practical method for calculating eigenfrequencies of a cantilever microbeam with the attached tip mass", J. Vibroeng., 18(5), 3070-3077. https://doi.org/10.21595/jve.2016.16636.