• Title/Summary/Keyword: Dynamic Stimulation

Search Result 124, Processing Time 0.028 seconds

Effects of Mechanical Stimulation for MC3T3-E1 Cells using Bioreactor (바이오리액터를 이용한 MC3T3-E1 세포의 기계적 자극에 대한 영향)

  • Lee, In-Hwan;Park, Jeong-Hun;Lee, Seung-Jae;Cho, Dong-Woo;Kang, Sang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1411-1414
    • /
    • 2008
  • It is reported that mechanical stimulation takes a role in improving cell growth in skeletal system. And various research groups have showed that developed bioreactor to stimulate cell-seeded and threedimensional scaffold. In this study, we designed a custom-made bioreactor capable of applying controlled compression to cell-seeded agarose gel. This device consisted of a circulation system and compression system. In circular system, culture chamber was sealed for prohibiting contamination and media solution was circulated by pump. In compression system, mechanical stimuli were controlled by LabVIEW software and mechanical transfer system. Cell-encapsulated agarose gels were cultured for up to 7 days. There were significant differences between the number of cells grown in dynamic cell culture and in static cell culture from 3 days to 7 days.

  • PDF

The Effects of Action Observational Physical Training with Rhythmic Auditory Stimulation on Muscle Activity of the Lower Extremity and Gait Ability in Patients with Chronic Stroke (리듬청각자극을 동반한 동작관찰 신체훈련이 만성 뇌졸중 환자의 하지 근활성도와 보행능력에 미치는 영향)

  • Song, Su-Young;Song, Yo-Han;Lee, Hyun-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2018
  • PURPOSE: The purpose of this study was to investigate the effect of action observational physical training with rhythmic auditory stimulation on muscle activity and gait ability in patients with stroke. METHODS: Twenty-six chronic stroke patients participated in this study were assigned into three groups, experimental group 1 (10% faster tempo rhythmic auditory stimulation with action observation training) n=8, experimental group 2 (average tempo rhythmic auditory stimulation with action observation training) n=9, and control group (action observation training) n=9. In this experiment, the corresponding exercise were applied into the subjects of three group for 30 minute a day, 3 time a week during 4 weeks. All participants were measured to muscle activity of lower limb, 10 meter walking test, Figure of 8 walk test, Dynamic gait Index. The collected data were analyzed by using SPSS (version 18.0 for window) and verified that each data was a normal distribution based on Shapiro-Wilk test. Between-group and within-group comparison was analyzed by using One-way ANOVA test, Paired t-test respectively. In all statistical analyses, significance level, ${\alpha}$ was set by .05. RESULTS: The above results revealed that the all experimental group 1 and experimental group 2 and control group were all effective to improve the lower limb muscle activities, gait ability. However more positive effects shown action observational physical training with rhythmic auditory stimulation experimental group. CONCLUSION: This study suggest that action observation physical training with rhythmic auditory stimulation is effective intervention for improvement of muscle activity and walking ability in chronic stroke patients.

The Effects of Balance Training with Functional Electrical Stimulation on Balance and Gait in patients with chronic stroke

  • Kim, Eunji;Min, Kayoon;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • Objective: The purpose of this study was to examine the effects of balance training with Functional Electrical Stimulation (FES) on balance and gait in patients with chronic stroke. Design: A cross over design Methods: Nine patients with stroke were recruited into this study. They were measuring their balance ability and gait ability. The intervention "A" included 4 weeks of balance training with Functional Electrical Stimulation (FES) for 40 m/d, 3 d/wk. Intervention "B" included 4 weeks of balance training with placebo Functional Electrical Stimulation (FES) for 40 m/d, 3 d/wk. Of the 9 patients who completed the study, 5 were randomly assigned to" group A-B", and 4 to group B-A. The crossover occurred after 4 weeks. Results: Following are the specific results of balance training with Functional Electrical Stimulation (FES) on patients with chronic stroke. First, patients who received treatment A showed improvement compared with patients who received treatment B in static balance. There were significant decreases in anterioposterior, mediolateral postural sway extension and velocity moment (p<0.05) with their eyes opened and closed conditions. Second, they had significantly improved in dynamic balance (p<0.05). Lastly, there were also improvement in their gait velocity and cadence (p<0.05). Conclusions: These findings suggest that, the Functional Electrical Stimulation (FES) combined with balance training more effectively improves the balance and gait ability, I'm convinced that it could be actively used in clinics added to the conventional physical therapy in the future.

Effect of Olfactory Stimulation on Balance, Spasticity and Quality of Life in Chronic Stroke Patients (후각자극이 만성 뇌졸중 환자의 균형, 경직 및 삶의 질에 미치는 효과)

  • In, Tae-Sung;Kim, Kyung-Hun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.403-410
    • /
    • 2020
  • The purpose of this study was to determine whether olfactory stimulation would improve spasticity, balance ability and quality of life in stroke patients. Twenty-one stroke patients were recruited and were randomly divided into two groups: olfactory stimulation group (n=10) and sham stimulation group (n=11). Participants in both groups received conventional physical therapy for 30 minutes before the intervention. Additionally, subject in the olfactory stimulation group performed olfactory stimulation using lavender oil for 6 minutes (2 minx3 set), five times a week for two weeks, while the sham stimulation group conducted olfactory stimulation using water for the same amount of time. Composite-Spasticity-Score was used to assess spasticity level of ankle plantar-flexors. Dynamic balance was measured using a TUG. Postural-sway distance was measured using a force platform. Quality of life were measured by SF-36. There was no significant difference within group and between the groups in the spasticity. Significant improvement in postural-sway and TUG were observed in the olfactory stimulation group compared to the sham stimulation group (p<0.05). The Mental Componnt Summary of the SF 36 in the olfactory stimulation group improved significantly greater than the sham stimulation group (p<0.05). Our findings indicate that olfactory stimulation is beneficial and effective to improve balance ability and quality of life in stroke patients.

Effects of Combined Functional Electrical Stimulation and Joint Mobilization on Muscle Activation and Mobility of Ankle Joints and Modified Functional Reach Test in Stroke Patient

  • Kim, Su-Jin;Son, Ho-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.2
    • /
    • pp.41-51
    • /
    • 2019
  • PURPOSE: This study was conducted to investigate the effects of combined Joint Mobilization and Functional Electrical Stimulation on Muscle Activation and Mobility of ankle joints in stroke patients and their Modified Functional Reach Test (MFRT) results. METHODS: A total of 26 patients with stroke were randomly selected for enrollment in this study. (1) Functional Electrical Stimulation (FES) (2) combined Joint Mobilization and FES. An EMG system was used to measure tibialis anterior and gastrocnemius activities. Range Of Motion (ROM) of Ankle Joint and MFRT for Dynamic Balance. Pre and post intervention results were compared by paired-t-tests and differences in changes after intervention between groups were identified by the independent t-test. RESULTS: The muscle activation, ROM, and MFRT differed significantly in the experimental group (p<.05). The ROM was significantly different for the active dorsiflexion pre and post intervention in the group that received FES alone (p<.05). CONCLUSION: The results of this study suggest use of a systematic program of proactive posture control to prevent dysfunction when planning interventions for ankle joints can help stroke patients walk efficiently.

Effects of Integrating Transcutaneous Electrical Nerve Stimulation into Treadmill Gait Training Applying Functional Electrical Stimulation on Spasticity, Balance and Gait Ability in Stroke Patients: A Randomized Controlled Trial (기능적 전기자극을 적용한 트레드밀 보행훈련에 통합한 경피신경 전기자극이 뇌졸중환자의 경직도 균형, 보행 능력에 미치는 영향)

  • Lee, Mun-Su;Lee, Myung-Mo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.2
    • /
    • pp.39-48
    • /
    • 2020
  • PURPOSE: This study examined the effects of integrating transcutaneous electrical nerve stimulation into treadmill gait training by applying functional electrical stimulation on the spasticity, balance, and gait ability of chronic stroke patients METHODS: Twenty participants were assigned randomly to two groups: the treadmill gait training group with applied functional electrical stimulation (FES) with integrated transcutaneous electricalstimulation (TENS) (experimental group, EG, n = 10) and the treadmill gait training group with FES (control group, CG, n = 10). Both groups received treadmill gait training with FES for 30 minutes a time, four times a week, during five weeks. The experimental group received additional TENS on their L3, L5, and S2 dermatome for 30 minutes before the interventions. The spasticity, balance, and gait ability were evaluated before and after the training to compare the intergroup and intragroup changes. RESULTS: Both groups showed significant improvements in the static, dynamic balance, and gait ability (p < .05), but did not show any significant changes in the muscle tone. The EG showed significant improvements in the static balance ability and gait cycle compared to the CG (p < .05). CONCLUSION: Treadmill gait training combined with FES with integrated TENS is an effective method for improving the static balance and gait cycle. On the other hand, the effects of treadmill gait training with FES on spasticity need to be studied further.

Comparison of Somatostatin and Morphine Action on the Responses of Wide Dynamic Range Cells in the Dorsal Horn to Peripheral Noxious Mechanical and Heat Stimulation in Cats

  • Jung, Sung-Jun;Choi, Young-In;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.155-163
    • /
    • 1998
  • The purpose of present study was to compare the effects of somatostatin (SOM) and morphine (Mor) on the responses of wide dynamic range (WDR) cells to peripheral noxious stimulation. Single neuronal activity was recorded with a carbon-filament electrode at the lumbosacral enlargement of cat spinal cord. After identifying WDR cells, their responses to peripheral noxious mechanical or thermal stimuli were characterized and the effects of SOM and Mor, applied either iontophoretically or intrathecally, were studied. In most cells SOM and Mor suppressed noxious stimulus-evoked WDR neuronal activity, though a few WDR neurons showed no change or were excited by SOM and Mor. Systemically applied naloxone, a non-specific opioid antagonist, always reversed the Mor induced suppression of neuronal activity evoked by noxious mechanical stimuli, but did not always reverse the suppression of neuronal activity elicited by SOM. The suppressive effect of Mor on thermal stimulus-evoked neuronal activity was partially reversed by naloxone, while that of SOM were not reversed at all. The above results suggest that both Mor and SOM exert an inhibitory effect on thermal and mechanical stimulus-evoked WDR neuronal activity in cat spinal dorsal horn, but the mechanisms are dependent upon the functional populations of dorsal horn nociceptive neurons.

  • PDF

Use of an Electric Muscle Stimulation Thigh Band and High-intensity Circuit Training to Activate the Thigh Muscle (무릎 밴드를 이용한 EMS와 High-intensity Circuit Training의 대퇴근육 활성화 효과)

  • Hanna Park;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.27 no.2
    • /
    • pp.39-51
    • /
    • 2023
  • The purpose of this study was to effectively improve the thigh muscles of adult women working from home due to COVID-19. In this study, ten adult women working from home performed 1) an electromyography test, 2) a static balance test on a balance board, and a 3) dynamic balance test by squatting on a Bosu ball four times: before electric muscle stimulation (EMS), after EMS, after high-intensity circuit training (HICT), and after EMS plus HICT. For this test, EMS was attached to a medical knee support to manufacture an EMS knee band that could be easily worn regardless of the location. For the experiment, EMS(electric muscle stimulation) was attached to the medical knee protector to manufacture an EMS knee band that can be easily worn regardless of location, and was measured based on the right foot. The study results confirmed that in all tests (electromyography test, static balance test on the balance board, and dynamic balance test by squatting on a Bosu ball), thigh strength improved in the order of treatment before EMS, after EMS, after HICT, and after EMS plus HICT. The study showed that people working from home or with activity restrictions due to COVID-19 had better exercise effects when wearing the EMS knee band and performing HICT, even in a small space.

Activation of spinal Serotonergic Receptor Contributes to Electroacupuncture Analgesia in Rat with Chronic Pain (만성통증이 유발된 흰쥐에서 관찰된 침진통효과의 세로토닌성 기전)

  • Park Dong-Suk;Shin Hong-Kee;Lee Kyung-Hee
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.239-248
    • /
    • 2005
  • Objectives : Electroacupuncture (EA)-induced analgesia has been known to be mediated through the activation of opioid, noradrenergic and serotonergic receptors. However, little study on serotonergic mechanism has been performed in an animal model of chronic pain. The present study was designed to elucidate the type of serotonergic receptors responsible for EA analgesia in the chronic pain model. Methods : In rats with complete Freund's: adjuvant-induced inflammation and spinal nerve injury, spinal wide dynamic range (WDR) cell responses to graded electrical stimulation of afferent C fiber were recorded before and after spinal application of selective 5-hydroxytryptamine (5-HT) receptor antagonists. EA stimulation (2Hz, 0.5msec, 3mA) was applied to the contralateral Zusanli point for 30 min. Results : In both models of chronic pain, WDR cell responses were greatly inhibited after EA stimulation. EA-induced inhibition of WDR celt responses was significantly attenuated by spinal application of non-selective 5-HT receptor antagonist, dihydroergocristine Of 5-HT receptor antagonists tested, 5-HT1A (WAY 100635) and 5-HT2 (LY53857) receptor antagonists strongly reduced an ability of EA stimulation to inhibit WDR cell responses. However, 5-HT1B (GR55562) and 5-HT3 (LY278584) receptor antagonists also had weak but significant blocking action on EA-induced inhibitory effect on chronic pain. Conclusions : Dorsal hem cell responses, afferent C fiber stimulation, chronic pain, electroacupuncture, serotonergic receptors.

  • PDF

Effects of Electrical Stimulation of the Vestibular System on Neuronal Activity of the Ipsilateral Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats (일측 전정기관 손상 흰쥐에서 동측의 내측 전정신경핵 활동성에 대한 전정기관의 전기자극 효과)

  • Lee Moon-Yong;Kim Min-Sun;Park Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.263-273
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of electrical stimulation on vestibular compensation following ULX in rats. Electrical stimulation (ES) with square pulse ($100{\sim}300uA$, 1.0 ms, 100 Hz) was applied to ampullary portion bilaterally for 6 and 24 hours in rats receiving ULX. After ES, animals that showed the recovery of vestibular symptoms by counting and comparing the number of spontaneous nystagmus were selected for recording resting activity of type I, II neurons in the medial vestibular nuclei (MVN) of the lesioned side. And then the dynamic neuronal activities were recorded during sinusoidal rotation at a frequency of 0.1 Hz and 0.2 Hz. The number of spontaneous nystagmus was significantly different 24 hours (p<0.01, n=10), but not 6 hours after ULX+ES. As reported by others, the great reduction of resting activity only in the type I neurons ipsilateral to lesioned side was observed 6, 24 hours after ULX compared to that of intact labyrinthine animal. However, the significant elevation (p<0.01) of type I and reduction (p<0.01) of type II neuronal activity were seen 24 hours after ULX+ES. Interestingly, gain, expressed as maximum neuronal activity(spikes/sec)/maximum rotational velocity(deg/sec), was increased in type I cells and decreased in type II cells 24 hours after ULX+ES in response to sinusoidal rotation at frequencies of both 0.1 Hz and 0.2 Hz. This result suggests that accompanying the behavioral recovery, the electrical stimulation after ULX has beneficial effects on vestibular compensation, especially static symptoms (spontaneous nystagmus), by enhancing resting activity of type I neurons and reducing that of type II neurons.

  • PDF