• Title/Summary/Keyword: Dynamic Segmentation

Search Result 139, Processing Time 0.024 seconds

Accurate Segmentation Algorithm of Video Dynamic Background Image Based on Improved Wavelet Transform

  • Ming, Ming
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.711-718
    • /
    • 2022
  • In this paper, an accurate segmentation algorithm of video dynamic background image (VDBI) based on improved wavelet transform is proposed. Based on the smooth processing of VDBI, the traditional wavelet transform process is improved, and the two-layer decomposition of dynamic image is realized by using two-dimensional wavelet transform. On the basis of decomposition results and information enhancement processing, image features are detected, feature points are extracted, and quantum ant colony algorithm is adopted to complete accurate segmentation of the image. The maximum SNR of the output results of the proposed algorithm can reach 73.67 dB, the maximum time of the segmentation process is only 7 seconds, the segmentation accuracy shows a trend of decreasing first and then increasing, and the global maximum value can reach 97%, indicating that the proposed algorithm effectively achieves the design expectation.

An Image Segmentation Algorithm using the Shape Space Model (모양공간 모델을 이용한 영상분할 알고리즘)

  • 김대희;안충현;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.41-50
    • /
    • 2004
  • Since the MPEG-4 visual standard enables content-based functionalities, it is necessary to extract video objects from video sequences. Segmentation algorithms can largely be classified into two different categories: automatic segmentation and user-assisted segmentation. In this paper, we propose a new user-assisted image segmentation method based on the active contour. If we define a shape space as a set of all possible variations from the initial curve and we assume that the shape space is linear, it can be decomposed into the column space and the left null space of the shape matrix. In the proposed method, the shape space vector in the column space describes changes from the initial curve to the imaginary feature curve, and a dynamic graph search algorithm describes the detailed shape of the object in the left null space. Since we employ the shape matrix and the SUSAN operator to outline object boundaries, the proposed algorithm can ignore unwanted feature points generated by low-level image processing operations and is, therefore, applicable to images of complex background. We can also compensate for limitations of the shape matrix with a dynamic graph search algorithm.

Dense Optical flow based Moving Object Detection at Dynamic Scenes (동적 배경에서의 고밀도 광류 기반 이동 객체 검출)

  • Lim, Hyojin;Choi, Yeongyu;Nguyen Khac, Cuong;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.277-285
    • /
    • 2016
  • Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.

Dynamic Programming-based Stereo Matching Using Image Segmentation (영상 분할을 이용한 다이내믹 프로그래밍 기반의 스테레오 정합)

  • Seo, Yong-Seok;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.680-688
    • /
    • 2010
  • In this paper, we present a dynamic programming(DP)-based stereo matching method using image segmentation algorithm. DP has been a classical and popular optimization method for various computer vision problems including stereo matching. However, the performance of conventional DP has not been satisfactory when it is applied to the stereo matching since the vertical correlation between scanned lines has not been properly considered. In the proposed algorithm, accurate edge information is first obtained from segmented image information then we considers the discontinuity of disparity and occlusions region based on the obtained edge information. The experimental results applied to the Middlebury stereo images demonstrate that the proposed algorithm has better performances in stereo matching than the previous DP based algorithms.

A Study on Building Sewerage Data using Dynamic Segmentation Method (Dynamic Segmentation을 이용한 오수 관거 데이터구축에 관한 연구)

  • Park, Jeong-Wo;Yun, Jeong-Mi;Lee, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.11-19
    • /
    • 2006
  • Sewerage is the system that improves the quality of human life and prevents many disasters such as floods. However the investigators in Korea only have been concerned about the sewer system, so the sewage treatment plant stays in the basic level like mapping. For example, only one attribute can be recognized in the linear object. Because of this limitation, it makes difficult to manage the linear attribute regarding to the sewage pipe plan. And it is impossible to control a partial (point type, line type) attribute changes of the linear object. We will therefore present the applicable method for the attribute changes of the linear object like the sewage pipe plans. For this reason, this paper is designed on the basis of Dynamic Segmentation(DS). DS has the advantage of giving the attribute value to the exact place in the linear object. As a result of using DS, the variety environment changes around the sewage pipes are applied to the building sewerage data. This also makes it possible to get a precise estimation for the maximum dirty water amount.

  • PDF

An effective background subtraction in dynamic scene. (동적 환경에서의 효과적인 움직이는 객체 추출)

  • Han, Jae-Hyek;Kim, Yong-Jin;Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.631-636
    • /
    • 2009
  • Foreground segmentation methods have steadily been researched in the field of computer vision. Especially, background subtraction which extracts a foreground image from the difference between the current frame and a reference image, called as "background image" have been widely used for a variety of real-time applications because of low computation and high-quality. However, if the background scene was dynamically changed, the background subtraction causes lots of errors. In this paper, we propose an efficient background subtraction method in dynamic environment with both static and dynamic scene. The proposed method is a hybrid method that uses the conventional background subtraction for static scene and depth information for dynamic scene. Its validity and efficiency are verified by demonstration in dynamic environment, where a video projector projects various images in the background.

  • PDF

Dynamic Scene Segmentation Algorithm Using a Cross Mask and Edge Information (Cross Mask와 에지 정보를 사용한 동영상 분할)

  • 강정숙;박래홍;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1247-1256
    • /
    • 1989
  • In this paper, we propose the dynamic scene segmentation algorithm using a cross mask and edge information. This method, a combination of the conventioanl feature-based and pixel-based approaches, uses edges as features and determines moving pixels, with a cross mask centered on each edge pixel, by computing similarity measure between two consecutive image frames. With simple calcualtion the proposed method works well for image consisting of complex background or several moving objects. Also this method works satisfactorily in case of rotaitional motion.

  • PDF

An Illumination and Background-Robust Hand Image Segmentation Method Based on the Dynamic Threshold Values (조명과 배경에 강인한 동적 임계값 기반 손 영상 분할 기법)

  • Na, Min-Young;Kim, Hyun-Jung;Kim, Tae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.607-613
    • /
    • 2011
  • In this paper, we propose a hand image segmentation method using the dynamic threshold values on input images with various lighting and background attributes. First, a moving hand silhouette is extracted using the camera input difference images, Next, based on the R,G,B histogram analysis of the extracted hand silhouette area, the threshold interval for each R, G, and B is calculated on run-time. Finally, the hand area is segmented using the thresholding and then a morphology operation, a connected component analysis and a flood-fill operation are performed for the noise removal. Experimental results on various input images showed that our hand segmentation method provides high level of accuracy and relatively fast stable results without the need of the fixed threshold values. Proposed methods can be used in the user interface of mixed reality applications.

An Adaptive Contrast Enhancement Method using Dynamic Range Segmentation for Brightness Preservation (밝기 보존을 위한 동적 영역 분할을 이용한 적응형 명암비 향상기법)

  • Park, Gyu-Hee;Cho, Hwa-Hyun;Lee, Seung-Jun;Yun, Jong-Ho;Chon, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • In this paper, we propose an adaptive contrast enhancement method using dynamic range segmentation. Histogram Equalization (HE) method is widely used for contrast enhancement. However, histogram equalization method is not suitable for commercial display because it may cause undesirable artifacts due to the significant change in brightness. The proposed algorithm segments the dynamic range of the histogram and redistributes the pixel intensities by the segment area ratio. The proposed method may cause over compressed effect when intensity distribution of an original image is concentrated in specific narrow region. In order to overcome this problem, we introduce an adaptive scale factor. The experimental results show that the proposed algorithm suppresses the significant change in brightness and provides wide histogram distribution compared with histogram equalization.