• Title/Summary/Keyword: Dynamic Robust Design

Search Result 335, Processing Time 0.03 seconds

$H_\infty$Control Synthesis for Robust Control of a Turbo-Generator (터-빈 발전기의 견실성 제어를 위한$H_\infty$제어 시스템 설계)

  • Chung, Dae-Won;Kim, Kern-Joong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.622-628
    • /
    • 1999
  • This paper presented to design a robust turbo-generator control system using {{{{ { H}_{$\infty$ } }}}} control synthesis for improving small-signal stability. Application study of{{{{ { H}_{$\infty$ } }}}} control synthesis is more appropriate in this system since a turbo-generator system is usually operated under circumstance of unmeasurable modelling uncertainty and external disturbance. The{{{{ { H}_{$\infty$ } }}}} control theory was briefly reviewed for good understanding and the reasonable approach. The design results are simulated for a case study and to check the system performance in comparison with currently operating Lead/Lag filtered PSS performance.

  • PDF

Voltage Controller Design of Synchronous Generator by Pole Assignment (극배치에 의한 동기발전기의 전압제어기 설계)

  • Yim, Han-Suck
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.12
    • /
    • pp.472-484
    • /
    • 1985
  • A design of robust voltage controller for high speed excitation of synchronous machine was carried out by pole assignment techniques. An affine map from characteristic polynomial coefficients to feedback parameters is formulated in order to place the system eigen values in the desired region. The feedback parameters determined from linearized model are tested on nonlinear model subjecting it to small disturbances and system faults to show the effectiveness of the controller designed by the proposed technique. The results obtained indicate that the controller presented improves the dynamic stability and system performances of conventionally controlled synchronous machine significantly.

  • PDF

Design of output feedback variable structure control system with robust properties (출력궤한 가변구조제어게의 강인성 설계)

  • 이기상;임재형;이정동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1199-1205
    • /
    • 1993
  • It has been well known that the assumption of full state availability is one of the most important restrictions to the practical realization of VSCS. And several attempts to alleviate the assumption had been made. However, it is not easy to find a positive scheme among them. Recently, an output feedback variable structure control system(OFVSCS) was proposed and the effectiveness of the scheme was validated for the disturbance free systems. The purpose of this study is to propose a robust OFVSCS that have the robust properties against process parameter variations and external distrubances by extending the basic OFVSCS and to evaluate its control performances through power system stabilizer design example. The ROFVSCS is composed of dynamic switching function and output feedback switching control inputs that are constructed by the use of the unknown vector modeling technique. With the proposed scheme, existence of sliding mode is guaranteed and any nonzero bias can be suppressed in the face of disturbances and process parameter variations as far as well-known matching condition is satisfied. Due to the fact that the ROFVSCS is driven by small number of measured informations, the practical application of VSCS for the systems with unmeasurable states and for high order systems that conventional schemes cannot be applied, is possible with the proposed scheme. It is noticeable that the implementation cost of VSCS can be considerably reduced without sacrifice of control performances by adopting ROFVSCS since there is no need measure the states with high measurement cost.

  • PDF

A Study on Control System Design for Ship Mooring Winch System (무어링 윈치 제어시스템 설계에 관한 연구)

  • Kang, Chang-Nam;Jeong, Ji-Hyun;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.89-98
    • /
    • 2013
  • In this paper, the authors consider control system design problem of barge type surface vessel. It is based on the Dynamic Positioning System(DPS) design problem. The main role of barge ship is to carry and supply the materials to the floating units and other places. To carry out this job, it should be positioned in the specified area. Even though sometimes the thrust systems are installed on it, in general the mooring winch system with the rope is used. It may be difficult to compare the control performances of two types. But, if we consider this problem in point of usefulness, we can easily find out that the winch control system is more useful and applicable to the real field than the thrust control system except a special use. Therefore, in this paper we consider a single type mooring winch system and control system design problem in which accurate position control is needed. Because this result can be extended to the general type mooring system in which a number of winch are installed. At first, a mathematical model of winch is obtained and evaluated to verify the usefulness for control system design by experiment. Also, the disturbance model is extracted from experiment data to evaluate the strength of the uncertainty. Based on this results, the robust control system is designed and control performance is evaluated by simulation.

Cellular Parallel Processing Networks-based Dynamic Programming Design and Fast Road Boundary Detection for Autonomous Vehicle (셀룰라 병렬처리 회로망에 의한 동적계획법 설계와 자율주행 자동차를 위한 도로 윤곽 검출)

  • 홍승완;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.465-472
    • /
    • 2004
  • Analog CPPN-based optimal road boundary detection algorithm for autonomous vehicle is proposed. The CPPN is a massively connected analog parallel array processor. In the paper, the dynamic programming which is an efficient algorithm to find the optimal path is implemented with the CPPN algorithm. If the image of road-boundary information is utilized as an inter-cell distance, and goals and start lines are positioned at the top and the bottom of the image, respectively, the optimal path finding algorithm can be exploited for optimal road boundary detection. By virtue of the parallel and analog processing of the CPPN and the optimal solution of the dynamic programming, the proposed road boundary detection algorithm is expected to have very high speed and robust processing if it is implemented into circuits. The proposed road boundary algorithm is described and simulation results are reported.

Robust $H_{\infty}$ Control Using SVM (SVM을 이용한 강인한 $H_{\infty}$ 제어기 구성)

  • Yoon, Seong-Sik;Oh, Chang-Hoon;Kim, Min-Chan;Ahn, Ho-Kyun;Park, Seung-Kyu;Kwak, Gun-Pyong;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1656-1657
    • /
    • 2007
  • In this paper, a sliding mode controller with SVM sliding surface is proposed. In the conventional sliding mode control, the dynamic of sliding surface is not as same as nominal dynamic of original system. Therefore the aim of this paper is to design sliding surface without defining any additional dynamic state by using support vector machines. As a result, the proposed controller can have the same dynamic of nominal system controlled by $H_{\infty}$ controller.

  • PDF

A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle

  • Mohan, Santhakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.120-135
    • /
    • 2011
  • This paper proposes a model based trajectory tracking control scheme for under-actuated underwater robotic vehicles. The difficulty in stabilizing a non-linear system using smooth static state feedback law means that the design of a feedback controller for an under-actuated system is somewhat challenging. A necessary condition for the asymptotic stability of an under-actuated vehicle about a single equilibrium is that its gravitational field has nonzero elements corresponding to non-actuated dynamics. To overcome this condition, we propose a continuous time-varying control law based on the direct estimation of vehicle dynamic variables such as inertia, damping and Coriolis & centripetal terms. This can work satisfactorily under commonly encountered uncertainties such as an ocean current and parameter variations. The proposed control law cancels the non-linearities in the vehicle dynamics by introducing non-linear elements in the input side. Knowledge of the bounds on uncertain terms is not required and it is conceptually simple and easy to implement. The controller parameter values are designed using the Taguchi robust design approach and the control law is verified analytically to be robust under uncertainties, including external disturbances and current. A comparison of the controller performance with that of a linear proportional-integral-derivative (PID) controller and sliding mode controller are also provided.

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

Carrier Tracking Loop Design Using FLL-assisted PLL Scheme for Galileo L1F Channel (갈릴레오 L1F 채널에서 FLL-assisted PLL 기술을 이용한 반송파 추적 설계)

  • Choi, Seung-Duk;Lee, Sang-Kook;Hawng, In-Kwan;Shin, Cheon-Sig;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1217-1224
    • /
    • 2008
  • The carrier tracking has to be basically completed for accurate positioning of Galileo satellite system. The FLL for tracking frequency errors is robust to dynamic stress causing changes of propagation time but hardly tracks accurate carrier tracking. The PLL for tracking phase errors provides accurate carrier tracking but is sensitive to dynamic stress and its tracking performance is decreased when high dynamics exist. In this paper, we design the carrier tracking loop with the FLL-assisted PLL loop filter and co-operations of FLL and PLL to achieve accurate carrier tracking in high dynamic stress. we prove the performance of designed carrier tracking loop via simulations.

Robustness Analysis of Industrial Manipulator Using Neural-Network (신경회로망을 이용한 산업용 매니퓰레이터의 견실성 해석)

  • Lee, Jin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.125-130
    • /
    • 1997
  • In this paper, it is presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C3x is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, andsuitable for implementation of robust control.

  • PDF