• 제목/요약/키워드: Dynamic Optimization

검색결과 1,546건 처리시간 0.028초

등가정하중을 이용한 접합날개의 구조최적설계 (Structural Optimization of a Joined-Wing Using Equivalent Static Loads)

  • 이현아;김용일;박경진;강병수
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.585-594
    • /
    • 2006
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing are joined together in a joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performance and reduction of the structural weight. In this research, dynamic response optimization of a joined-wing is carried out by using equivalent static loads. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. The gust loads are considered as critical loading conditions and they dynamically act on the structure of the aircraft. It is difficult to identify the exact gust load profile. Therefore, the dynamic loads are assumed to be (1-cosine) function. Static response optimization is performed for the two cases. One uses the same design variable definition as dynamic response optimization. The other uses the thicknesses of all elements as design variables. The results are compared.

Identification of Dynamic Load Model Parameters Using Particle Swarm Optimization

  • Kim, Young-Gon;Song, Hwa-Chang;Lee, Byong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권2호
    • /
    • pp.128-133
    • /
    • 2010
  • This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion.

유전적 알고리듬을 적용하여 머시닝센터 베드두께의 동하중을 고려한 최적설계에 관한 연구 (A Study on the design Optimization of Thickness of Machiningcenter Bed under Dynamic Loading by using Genetic Algorithm)

  • 조백희
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 1999
  • This paper presents resizing design optimization method by utilizing genetic algorithm(GA), which consists of three basic operators : reproduction, crossover and mutation. The fitness and penalty function for resizing optimization problem are defined, and the flowchart of the developed computer program along with the descriptions of each modules is presented. Also, modelling for flexible-body dynamic analysis is presented. The model is composed of bodies, joints, and force elements such as translational spring-damper-actuator. The design objects si to determine the wall thickness for minimum weight under dynamic displacement constraint.

  • PDF

A New Penalty Parameter Update Rule in the Augmented Lagrange Multiplier Method for Dynamic Response Optimization

  • Kim, Min-Soo;Choi, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1122-1130
    • /
    • 2000
  • Based on the value of the Lagrange multiplier and the degree of constraint activeness, a new update rule is proposed for penalty parameters of the ALM method. The theoretical exposition of this suggested update rule is presented by using the algorithmic interpretation and the geometric interpretation of the augmented Lagrangian. This interpretation shows that the penalty parameters can effect the performance of the ALM method. Also, it offers a lower limit on the penalty parameters that makes the augmented Lagrangian to be bounded. This lower limit forms the backbone of the proposed update rule. To investigate the numerical performance of the update rule, it is embedded in our ALM based dynamic response optimizer, and the optimizer is applied to solve six typical dynamic response optimization problems. Our optimization results are compared with those obtained by employing three conventional update rules used in the literature, which shows that the suggested update rule is more efficient and more stable than the conventional ones.

  • PDF

다단계 최적변경법에 관한 연구 (A study on the Optimum Modification Method by Multi-level Opimization)

  • 박성현;박선주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1266-1272
    • /
    • 2001
  • This paper discusses the multi-level optimization method in dynamic optimization problems, through stiffened plate of ship structures. In structural optimization, the computational cost increases rapidly as the number of design variables increases. And we need a great amount of calculation and time on problems of modified dynamic characteristics of large and complicated structures. In this paper, the multi-level optimization is proposed, which decreases computational time and cost. The dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

공작기계구조물의 동강성 해석 및 동적 최적화에 관한 연구 (Dynamic Compliance Analysis and Optimization of Machine Structures)

  • 이영우;성활경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2001
  • Recently, as the demand for high efficiency, multi function machine tools is increasing, domestic machine tool industries are investing in research and development for precision machine tools with high speed. This trend is closely correlated with the design technique which is necessary to make new type machine tool compatible with new production system. To achieve high precision, high speed machine tools with reduced chatter, it is needed to develop dynamically rigid structure. In this paper, dynamic optimization of machine structure is presented. At this procedure of dynamic design, dynamic compliance is minimized using Simple Genetic Algorithm(SGA)

  • PDF

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • 한국가스학회지
    • /
    • 제15권5호
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.