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Abstract 
This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm 
optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, 
minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion. 
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1. Introduction 

In real system application, the component modeling critically 
affects the accuracy in stability analysis. This is why system 
identification [1] can be considered as important as the stability 
analysis itself. In power systems, there are several kinds of 
system components that need to be modeled such as generators, 
transmission lines, transformers, loads, etc. Of those 
components, loads are quite difficult to model due to the fact 
that they are composed of various types of equipments and 
have different topologies in distribution feeders. This paper 
mainly discusses load representation and its parameter 
identification in power systems for system stability studies.  

In power system stability analysis, the usually used load 
models are static models such as ZIP and exponent based 
models [2-5]. These models are based on the voltage and 
frequency dependency of active and reactive power demands. 
In [6-7], first-order dynamical load models to represent the load 
restoration characteristic are proposed, and they are so-called 
aggregated load models and employed for long-term voltage 
stability analysis. Model parameters are the exponents for 
short-term and long-term voltage dependency and the time 
constant for dynamic load response to reduce the discrepancy 
between short-term and long-term loads. To identify the 
parameters, measurement based parameter estimation should be 
performed.

In recent years, there has been arisen a strong need for more 
accurate load modeling that can consider both static and 
dynamic models [8-12]. In the structure of the model, loads are 
represented by a ZIP model and one or two induction motors. 
The inclusion of induction motors is needed to check system 
short-term voltage stability because of their reactive power 

consumption behavior during comparatively low voltage level. 
In the load modeling, 3-rd order induction motor models are 
recommended with the state variables of rotor angular speed, 
internal voltages in the direct and quadrature axis. The 
induction motor model is nonlinear, so there is limitation to 
apply the conventional linear parameter estimation method.  

This paper presents a method for estimating the parameters 
of an equivalent load model for induction motor dominating 
loads as the first step toward the improved load modeling. The 
method applies particle swarm optimization (PSO) [13-14] to 
minimize the error of the outputs using the estimated 
parameters, which are obtained by numerical integration with 
Runge-Kutta 4th order method, from the time series data with 
measurement. To test the feasibility of the approach, this paper 
includes an example applying the algorithm to 23-bus test 
system.

2. PSO Based Load Model Parameter Estimation 

2.1 Load model structure 
The structure of the equivalent load models, considered in 

the paper, is mainly composed of two components; they are an 
induction motor and a static load as shown in Fig. 1 
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Fig. 1 Load model structure of interest 

The static load model used in the paper is a ZIP model and 
active and reactive load demand, PZIP and QZIP, of the model 
can be expressed as follows: 
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where PZIPo and QZIPo are active and reactive load demand 
when voltage magnitude of the load bus is Vo as the reference. 
In (1) and (2), ap, bp and cp are the coefficients for the ratio of 
constant impedance, constant current and constant power 
portion to the active load, respectively; aq, bq and cq are those 
for the reactive load. 

As for the dynamic load behavior, the 3rd order induction 
motor model [2-4] is employed. The equivalent circuit of the 
induction motor is shown in Fig. 2. 

Fig. 2 Equivalent circuit of an induction motor  

In Fig. 2, Rs and Xs are the stator resistance and reactance, 
respectively; Xm is the magnetization reactance; Rr and Xr are 
the rotator resistance and reactance, respectively; V and I are 
the vector for the motor terminal voltage and current, 
respectively; s denotes the slip of the motor, which can be 
expressed as (ωm-ωo)/ωo. ωm and ωo stand for the rotor angular 
velocity and its synchronous value.  

The usually used model of induction motor in stability 
studies is the 3rd order model, and it can be expressed 
mathematically as follows: 
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where Ed' and Eq' denote the direct and quadrature-axis 
components of the internal voltage, respectively, inside the 
transient rotor short-circuit reactance, X', from the terminal; X
is the rotor open-circuit reactance; To' is the transient open-
circuit time constant; H is the inertia constant; Tm and Te are the 
mechanical and electrical torque, respectively. 

In (5), Tm can be expressed as follows: 

2(1 ) (1 )m LoT T A s B s C= − + − +  (8) 

where TLo is the reference torque of the mechanical load. 

2.2 PSO-based parameter estimation 
For the study load bus, the input parameters are voltage 

magnitude and angle at the node, and the outputs are active and 
reactive power demand. The main interest of the paper is the 
voltage dependency of the load. It is assumed that from the 
measurement, a number of samples for the input and outputs 
are obtained with a certain sampling frequency.  

To find the best fit for the parameters of the load model 
structure in Fig. 1, this paper employs a particle swarm 
optimization (PSO) algorithm. Fig. 2 briefly shows the load 
model parameter estimation procedure.  
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Fig. 3 Estimation procedure for load model parameters 

During the estimation procedure, the estimated outputs by 
each particle of PSO are obtained as follows: 
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where ZIPP̂  and ZIPQ̂  are the estimated active and reactive 

outputs from the ZIP load, and IMP̂  and IMQ̂ are those from 

the induction motor. In this paper, the outputs by the motor are 
estimated by numerical integration with Runge-Kutta 4th order 
method.

For parameter estimation, this paper adopts the prediction-
error approach, of several procedures [1]. The fitness function 
in the optimization is the summed error between the measured 
outputs, { , }P Q , and the simulated outputs, }ˆ,ˆ{ QP . The 

fitness function can be explained mathematically as follows: 
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where NS is the total number of samples for the estimation. 

2.3 PSO algorithm 
In PSO architecture a problem is given, and some way to 

evaluate a proposed solution to it exists in the form of fitness 
function. A communication structure or social network is also 
defined, assigning neighbors for each individual to interact with. 
Then a population of individuals defined as random guesses at 
the problem solutions are initialized. These individuals are 
candidate solutions which are also known as particles. A single 



particle by itself is unable to accomplish anything. The power 
is in interactive collaboration. An iterative process to improve 
these candidate solutions is set in motion. The particles 
iteratively evaluate the fitness of the candidate solutions and 
remember the location where they had their best success. The 
individual’s best position corresponding to their best solution is 
called the particle best or local best. Each particle makes this 
information available to their neighbors. Each particle has 
memory and remembers the following information; the 
particle’s best position, pbest, where the particle itself attained 
its best success and the global best position, gbest, where its 
neighborhood or any particle in the swarm attained the global 
best success. 

The first procedure of PSO is to initialization of all the 
particles in the solution space. Then, in each PSO iteration, 
each particle moves from the current position to next one by 
adjusting its own position and velocity based on two best 
positions, the personal and group best position. The particle 
position and velocity update equations in the simplest form that 
govern the PSO is given below: 
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where Xi
k+1 represents the current position of the particle, Xi

k is 
the previous particle’s position, Vi

k+1 is the current velocity of 
the particle, Vi

k is the previous velocity of the particle. C1 and 
C2, are the acceleration coefficients while r1, and r2 are random 
numbers uniformly distributed in the interval [0, 1]. k

pbestP is 

the personal best position of the particle, pgbest is the global best 
position of the swarm. w1 and w2 stands for the initial and final 
value of inertia weight respectively. kmax is the maximum 
number of iterations and k as the current iteration number. The 
PSO represented by (12)~(14) is called PSO with linearly 
decreasing inertia weight (PSO-LDIW).  

Basically, PSO can provide solutions to unconstrained 
optimization problems. The movements of main variables, in 
the PSO procedure, are confined within the feasible solution 
space, but inadequately selected induction parameters might 
cause divergence in numerical integration even though the 
input time series shows a stable trajectory. Thus, the paper 
adopts an extension of the fitness function as follows: 

1 2( ) ( ) div inff f K b K b⋅ = ⋅ + +  (15) 

where bdiv and binf are binary variables for the numerical 
divergence and infeasibility, which can be 0 or 1, respectively. 
K1 and K2 are the penalty constants for divergent and infeasible 
cases. K1 and K2 need to be set to very high values. In (15), 
infeasibility term needs to be added for those cases where the 
sum of ap and bp (or aq and bq) is greater than 1 in the ZIP load. 

2.4 Overall procedure 
The overall procedure of the PSO load model parameter 

identification is as follows: 

Step 1 Input sampling data and set the PSO independent run 
number, i, to 1. 

Step 2 Initialize all the particles within the feasible region in 
the parameter space, and set the PSO iteration number, 
k, to 1. 

Step 3 If k is greater than kmax, then go to Step 7.  
Step 4 Perform numerical integration with the parameter set 

for each particle and calculate the extended fitness 
function value. 

Step 5 Determine the particle’s velocity with (12) and move 
each particle’s using (13). 

Step 6 Increase k by 1 and change the inertia weight 
depending on k with (14). Go to Step 3. 

Step 7 Print out the parameter set of the group best position 
and verify the steady state output with the generated 
parameter set.  

Step 8 Increase i by 1, and if i is greater than imax, then go to 
the next step.  

Step 9 Do the time domain simulation with adequate 
parameter sets and then select one that best fits the 
measured trajectory.  

PSO is a metaheuristic approach to search the solution space 
within the given feasible region, so it only uses the information 
of fitness function values for each particle’s position. In the 
authors’ experience, several parameter sets, provided by an 
independent run of PSO, may cause the induction motor’s 
steady state active and reactive outputs that are quite far from 
the reasonable range. Thus, it is recognized that there is a need 
to consider the steady state outputs calculated with each 
parameter set for the verification process. The steady state 
outputs of an induction motor can be calculated as follows: 
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3. Numerical Examples 

The proposed estimation algorithm for the dynamic load 
model parameters was applied to 23-bus test system [15]. The 
one-line diagram of the systems was shown in Fig. 4.  



Fig. 4 One-line diagram of 23-bus test system 

To obtain the time series data from a load bus of the system, 
a time simulation package of TSAT [16] is applied. In this 
simulation, the main issues of modeling can be described as 
follows:

Bus 3005 is the bus of interest to obtain load model 
parameters. It has two types of loads, ZIP and induction 
motor loads. The mechanical load assumed to be represented 
with the quadratic term only in (8).  
All the loads except bus 3005 are represented as ZIP loads. 
The portions of constant impedance and current load are 
30% for both of them.  
The contingency is a three-phase short-circuit fault to line 
151-152, and the line is tripped 3 cycles after the fault.  
The time series data for 2 seconds with 0.5 cycle sampling 
frequency during the period of load restoration.  
In this simulation, a standard PSO, developed in [17], was 

adopted. The PSO parameters used are shown in Table 1, and 
the range of each model parameter for the induction motor load 
is illustrated in Table 2. In Table 2, so stands for the initial slip 
for the numerical simulation.  

Table 1. PSO parameters used in the simulation 

c1 2.0 w1 0.9 
c2 2.0 w2 0.4 
r1 (0,1] # of particles 40 
r2 (0,1] kmax 500 

Table 2. Ranges of model parameters for induction motor 

Param. Min. Max. Param. Min. Max.
Rs 0.001 0.5 Xr 0.001 1.0 
Xs 0.001 1.0 H 1.0 10.0 
Xm 0.010 5.0 so 0.10 0.15 
Rr 0.001 0.5 

In this simulation, we assumed that the active power portion 
of the induction motor load and the power factor of it are 
known. Thus, the steady state error of the given parameter set 
can be checked with (16) and (17). The algorithm performs 
fifty independent runs of PSO, and then it provides fifty sets of 
load model parameters for the structure in Fig. 1. Of those sets, 

five of them only satisfy the criterion of 5% steady state error 
criterion.  

Fig. 5 shows the objective function value variation with 
respect to PSO iteration for the case providing an adequate set 
of parameters. 

Fig. 5 Variation of the extended objective function during PSO 
simulation 

During the initial part of the iteration, the sets of parameters 
cause trajectories of divergence in numerical integration, so the 
corresponding utility function values by (15) are very large 
because of K1. After some PSO iteration, the trajectories 
become stable and then the procedure finds a parameter set 
resulting in a minimum of the utility function. Table 3 shows 
the parameter set, obtained in the simulation.  

Table 3. Estimated load model parameters 

Rs 0.473 Rr 0.237 ap 0.545 aq 0.580 
Xs 0.030 Xr 0.667 bp 0.333 bq 0.322 
Xm 2.009 H 2.483 cp 0.122 cq 0.097 
so 0.1433 - -   

For the verification of the obtained parameters, time domain 
simulation is performed with the estimated parameters. Fig 6 
and 7 show the estimated active and reactive power outputs of 
the load model with the actual time trajectories with the 
original parameter set. In this example, the original set of 
parameter of the model could not be obtained. The reason 
might be that the range of the solution space is rather wide.  

Fig. 6 P trajectories with the actual and estimated parameters 



Fig. 7 Q trajectories with the actual and estimated parameters 

Next, the proposed algorithm is applied for the estimation of 
the load model parameters including ZIP and motor load 
portion. The portion of them for active power is defined by ZIP

and IM , and that for reactive power is done by ZIP and IM.
Table 4 shows the set of parameters for the case.  

Table 4. Estimated load model parameters including ZIP and 
motor load portion 

Rs 0.424 Rr 0.139 ap 0.386 aq 0.221
Xs 0.159 Xr 0.188 bp 0.354 bq 0.744
Xm 4.819 H 4.722 cp 0.260 cq 0.035

IM 0.537 IM 0.444 ZIP 0.463 ZIP 0.556
so 0.1209 - - 

Also for verification of the parameter set, seen in Table 4, 
time domain simulation is performed and the simulation output 
and the sampled data are compared. Fig. 8 and 9 illustrate the 
comparison results for active and reactive power output with 
the simulation result and the sampled data.  

Fig. 8 P trajectories with the actual and estimated parameters 

The difference between the 1st and 2nd case is whether to 
include the portion parameters for ZIP and motor load in the 
estimation procedure using PSO. In the 1st case, the active 
power portion of ZIP is around the half of the pre-fault 
condition, but in the 2nd case, ZIP and ZIP are free to change in 
the given range of 0 to 1.  

In this paper, the error between the sampled and simulation 
data by the estimated parameter set is evaluated using the 
following indices [10]: 

Fig. 9 Q trajectories with the actual and estimated parameters 

In this paper, the error between the sampled and simulation 
data by the estimated parameter set is evaluated using the 
following indices [10]: 
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where iy  and ˆiy  are the i-th sampled data and simulated 

output with the estimated parameters. In (19), SNR is short for 
signal-to-noise ratios.  

Table 5 shows the values of the two indices, calculated for 
the two cases. As in Table 5, the parameter sets obtained in the 
2nd case can provide better simulation results from the 
viewpoint of deviation. Compared to the result described in 
[10], the error terms for active and reactive power for case 2 are 
slightly more than those. In [10], the stochastic approximation 
technique is employed. 

In the authors’ experience, the algorithm, proposed in this 
paper, is adequate for the situation where the system operators 
are not that well informed of the load model parameters during 
a period of time. In other words, it can be applied for load 
model parameter estimation in the long-term period. As one of 
current research trends, the researchers are very interested in 
on-line load modeling using the information from the rather 
fast monitoring devices such as PMU (phasor measurement 
units) [18]. For the purpose of on-line load modeling, a 
deterministic algorithm, one of steepest descent algorithms, 
needs to be combined with PSO into a kind of hybrid technique. 

Table 5. Error indices for the two cases 

Case 1 Case 2 
εP 3.82 [%] εP 2.97 [%] 

SNRP 28.36 [dB] SNRP 30.53 [dB] 
εQ 5.83 [%] εQ 2.92 [%] 

SNRP 24.69 [dB] SNRP 30.70 [dB] 



4. Conclusions 

This paper presents a PSO based load modeling method to 
estimate the parameters for the load model structure including 
static and dynamic parts. The method can provide adequate sets 
of the load model parameters that minimize the error between 
the actual measurement and simulated data and satisfy the 
steady state error criterion.  

As a future work in this topic, such a hybrid algorithm with 
PSO and a deterministic optimization technique needs to be 
employed to speed up the estimation time and to apply the 
deterministic local optimization algorithm when the system 
operating point is slightly moved and hence the parameters may 
be also slightly changed in the short-term period.  
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