• Title/Summary/Keyword: Dynamic Interface

Search Result 892, Processing Time 0.029 seconds

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION - PART I: POWERTRAIN MODELLING

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.459-468
    • /
    • 2006
  • The objective of this paper is the development of the forward-looking dynamic simulation model of a hybrid electric vehicle(HEV) for a fuel economy study. The specification of the vehicle is determined based on two factors, engine peak power to curb weight ratio and specific engine power. The steady state efficiency models of the powertrain components are explained in detail. These include a spark ignition direct injection(SIDI) engine, an integrated starter alternator(ISA), and an infinitely variable transmission(IVT). The paper describes the integration of these models into a forward facing dynamic simulation diagram using the AMESim environment. Appropriate vehicle and driver models have been added and described. The controller was designed in Simulink and was combined with the physical powertrain model by the co-simulation interface. Finally, the simulation results of the HEV are compared with those of a baseline vehicle in order to demonstrate the fuel economy potential. Results for the vehicle speed error and the fuel economy over standard driving cycles are illustrated.

A Study on an Advanced Evaluation Method for Dynamic Signature Verification System

  • Kim, Jin-Whan;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • This paper is a research on an evaluating method for the dynamic signature verification system. It is described about various factors such as error rate, the size of signature verification engine, the size of the characteristic vectors of a signature, the ability to distinguish similar signatures, the processing speed of signature verification and so on. This study identifies factors to consider in evaluating signature verification systems comprehensively and objectively without an officially approved signature database, examines the meaning of each of the factors, and proposes criteria for evaluating and analyzing the factors.

Development of Aerodynamic Analysis Technology for Wind Turbines using a Multibody Dynamic Analysis Software (다물체 동력학 해석 프로그램을 이용한 풍력발전기 공력해석 기술개발)

  • Rim, Chae Whan;Bang, Je Sung;Cho, Huije;Moon, Seok Jun;Chung, Tae Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.180.2-180.2
    • /
    • 2010
  • Simulation technology for dynamic analysis of wind turbine is developed. The Aerodyn and the DAFUL are chosen for aerodynamic analysis and multi-body and flexible body dynamics respectively. Subroutines and variables of Aerodyn developed by NREL are analyzed with hub-height wind data, full field turbulent wind data and Airfoil data. The interface to perform coupled analysis between AeroDyn and DAFUL, GUI for modeling several parts of wind turbines are developed. The program will be extended to analyze the coupled analysis of aerodynamic and hydrodynamic behavior for floating offshore wind turbines.

  • PDF

A Study on the Noise and Vibration Reduction Effect Depending on Dynamic Property of Slab (바닥판의 동적특성에 따른 소음진동 저감성능에 관한 연구)

  • 황재승;김선우;송진규;서재란
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.259-266
    • /
    • 2004
  • The vibration of slab causes a sudden change of air pressure in the interface between slab and air to create structure home sound. Floor impact noise induced from the vibration of slab became one of the hottest social issues in these day, and it took the biggest parts of the cause of damage in environmental dispute. Because the structure borne sound of slab is different from the dynamic characteristic of slab, it is required more precise vibroacaustic analysis. In this study, we was trying to understand by what mechanism the slab noise is induced from the slab vibration and the relationship between the dynamic propety of slab and the noise is shown by the numerical simulation.

  • PDF

The Dynamic Characteristics Analysis Between Pantograph and Catenary System Using Block Pulse Function (블럭펄스함수를 이용한 판토그래프와 가선시스템사이의 동특성 해석)

  • Shin, Seung-Kwon;Song, Yong-Soo;Eum, Ju-Hwan;Eum, Ki-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.748-750
    • /
    • 2004
  • The pantograph should supply the electrification equipments of a train with the current from the overhead catenary system over a broad range of speeds. For a high-speed electrical train, the dynamic interaction between the pantograph and the overhead catenary system causes the variation of the contact force. As the operational speed increases, the variation of the contact force increases. The contact force variation can cause contact losses, arcing and sparking. If the spark happens between the pantograph and the overhead catenary system, the EMI(electro magnetic interface) and noises may occur. After all, the quality of current collection is deteriorated. This paper deals with the dynamic characteristics analysis between pantograph and catenary system using block pulse function.

  • PDF

Nugget Formation and Dynamic Resistance in Resistance Spot Welding of Aluminum to Steel

  • Chang H. S.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • Auto industry has employed resistance spot welding(RSW) to join steel sheets for structural rigidity of automobile body. Driven by the need to reduce weight and fuel consumption, car companies have been evaluating aluminum intensive vehicles(AIVs) as a way to reduce vehicle weight without downsizing. During the transition from all steel-construction vehicle body to aluminum intensive body, joining aluminum to steel sheets emerges as a serious contender in automobile body. This paper deals with application of transition material to RSW aluminum to steel. Placing transition material insert between the aluminum/steel interface was found very effective to overcome physical incompatibility between aluminum and steel. Use of transition insert allows for two separate weld nuggets to be formed in their respective aluminum/aluminum and steel/steel interfaces. This RSW processes was monitored with the aid of dynamic resistance sampling. Typical patterns in sampled dynamic resistance curves indicated formation of sound nugget. The growth of two separate nuggets was examined by micro-cross section test.

  • PDF

Dynamic Large Eddy Simulation of the Vortex Breakdown of Swirling Flow using MPI Parallel Technique (Dynamic Large Eddy Simulation과 MPI병렬 계산 기법을 이용한 스월 유동에서의 Vortex Breakdown에 관한 연구)

  • Sung Hong Gye
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • 연소실 안으로 분출되는 스월 유동의 vortex breakdown mechanism에 대한 연구를 하였다. 3차원 유한 체적기법과 Runge-Kutta 시간 적분법이 적용되었으며, 난류모델은 dynamic large eddy simulation (DLES)이 적용되었다. 계산 시간의 효율성과 기억용량을 효과적으로 사용하기 위하여 message passing interface (MPI) 병렬계산 기법이 적용되었다. 스월 난류 유동에 있어서 vortex breakdown 거동을 가시적으로 표착 하였는데, 이는 스월 유동에 의한 난류 응력 증대, 난류 생성/소산율 증대 및 혼합율 증대에 대한 실험적 근거를 뒷받침하는 매우 중요한 결과이다. 또한 평균 속도와 난류 운동에너지에 대한 계산 결과도 실험 결과와 비교하였다.

  • PDF

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

The Modeling of OverCurrent Relay using Dynamic Link Library (Dynamic Link Library 기법을 이용한 과전류 계전기 모델링)

  • Seong, No-Kyu;Seo, Hun-Chul;Yeo, Sang-Min;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1065-1070
    • /
    • 2009
  • This paper presents the new technique of modeling using Dynamic Link Library(DLL) in ElectroMagnetic Transients Program - Restructured Version(EMTP-RV) in which we have simplified the procedures of OverCurrent Relay(OCR) modeling. The DLL function is designed to allow EMTP-RV users to develop advanced program model modules and interface them directly and intimately with the EMTP-RV engine. The modeled OCR is verified by simulating the various fault cases in the distribution system. Also, the performance for the modeling of OCR using DLL is compared with that of the method using the control components of EMTP-RV and using EMTP/MODELS. The results show the validity of modeled OCR and the effectiveness of the method using DLL function.

Comparative dynamic studies of thick laminated composite shells based on higher-order theories

  • Ganapathi, M.;Patel, B.P.;Pawargi, D.S.;Patel, H.G.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.695-711
    • /
    • 2002
  • Here, the dynamic response characteristics of thick cross-ply laminated composite cylindrical shells are studied using a higher-order displacement model. The formulation accounts for the nonlinear variation of the in-plane and transverse displacements through the thickness, and abrupt discontinuity in slope of the in-plane displacements at any interface. The effect of inplane and rotary inertia terms is included. The analysis is carried out using finite element approach. The influences of various terms in the higher-order displacement field on the free vibrations, and transient dynamic response characteristics of cylindrical composite shells subjected to thermal and mechanical loads are analyzed.