• Title/Summary/Keyword: Dynamic Environments

Search Result 1,020, Processing Time 0.031 seconds

Performance Evaluation of a Vector-Tracking-Loop for GNSS Jamming Effect Mitigation Under Static and Dynamic Conditions

  • Cheon, Wang-Seong;Ji, Gun-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.113-125
    • /
    • 2018
  • Since the global positioning system receivers on the surface of the Earth use satellite signals sent from a remote distance and the intensity of received signals is weak, they are vulnerable to jamming. This paper implements a vector-tracking loop (VTL)-based global navigation satellite system (GNSS) receiver algorithm as an anti-jamming technique and compares the performance of VTL-based receivers with that of scalar-tracking loop (STL) that is used in general GNSS receivers at various jamming environments and a vehicle's dynamics. The simulation results shows that VTL is more robust against jamming than STL in all operating environments.

An Efficient Data Broadcast System Supporting Dynamic Data Request Patterns in Mobile Data Services (이동 데이터 서비스에서 동적인 데이터 요청패턴을 지원하는 효율적인 데이터 방송 시스템)

  • Shin, Dong-Cheon
    • Journal of Information Technology Services
    • /
    • v.8 no.1
    • /
    • pp.179-192
    • /
    • 2009
  • In wireless environments, it is very effective to introduce a data broadcast system for providing a number of clients with mobile data services. In particular, an efficient broadcast scheduling and a caching strategy are very important for performance of data broadcast systems in wireless environments which have such inherent restrictions as low bandwidth, frequent disconnections, and short battery life. In this paper, we present a data broadcast scheduling strategy using bit vectors to cope with dynamic request patterns of clients. In addition, we also propose an efficient caching strategy, 2FWT, that takes characteristics of the broadcast scheduling strategy into account. Finally, we evaluate performance of the data broadcast system. According to the results, the proposed system generally shows better performance than others.

How Group Dynamics Affect Team Achievements in Virtual Environments

  • Lee, Ji-Eun;Shin, Minsoo
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.64-72
    • /
    • 2014
  • This study explored the elements that affect team achievements in virtual environments. In this study, consideration was given to the role of group dynamics in facilitating productive interaction. We aspired to reveal the mechanisms of group dynamics and examined how group dynamics affected team achievements in virtual environments. The empirical study was performed with undergraduate students enrolled in an e-learning course. In collaboration with other majors, students executed team projects and managed project issues in forums or chat rooms. The results of the empirical study indicated that leadership, creative friction, and group cohesion (components of group dynamics) had positive relationships with team achievements. The findings confirmed that addressing creative conflict is a method to improve team performance and that leadership is a key factor in project teams.

A Comparison of Deep Learning Models for IQ Fingerprint Map Based Indoor Positioning in Ship Environments

  • Yootae Shin;Qianfeng Lin;Jooyoung Son
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1122-1140
    • /
    • 2024
  • The importance of indoor positioning has grown in numerous application areas such as emergency response, logistics, and industrial automation. In ships, indoor positioning is also needed to provide services to passengers on board. Due to the complex structure and dynamic nature of ship environments, conventional positioning techniques have limitations in providing accurate positions. Compared to other indoor positioning technologies, Bluetooth 5.1-based indoor positioning technology is highly suitable for ship environments. Bluetooth 5.1 attains centimeter-level positioning accuracy by collecting In-phase and Quadrature (IQ) samples from wireless signals. However, distorted IQ samples can lead to significant errors in the final estimated position. Therefore, we propose an indoor positioning method for ships that utilizes a Deep Neural Network (DNN) combined with IQ fingerprint maps to overcome the challenges associated with accurate location detection within the ship. The results indicate that the accuracy of our proposed method can reach up to 97.76%.

Mobile Robot Obstacle Avoidance using Visual Detection of a Moving Object (동적 물체의 비전 검출을 통한 이동로봇의 장애물 회피)

  • Kim, In-Kwen;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.212-218
    • /
    • 2008
  • Collision avoidance is a fundamental and important task of an autonomous mobile robot for safe navigation in real environments with high uncertainty. Obstacles are classified into static and dynamic obstacles. It is difficult to avoid dynamic obstacles because the positions of dynamic obstacles are likely to change at any time. This paper proposes a scheme for vision-based avoidance of dynamic obstacles. This approach extracts object candidates that can be considered moving objects based on the labeling algorithm using depth information. Then it detects moving objects among object candidates using motion vectors. In case the motion vectors are not extracted, it can still detect the moving objects stably through their color information. A robot avoids the dynamic obstacle using the dynamic window approach (DWA) with the object path estimated from the information of the detected obstacles. The DWA is a well known technique for reactive collision avoidance. This paper also proposes an algorithm which autonomously registers the obstacle color. Therefore, a robot can navigate more safely and efficiently with the proposed scheme.

  • PDF

Stealthy Behavior Simulations Based on Cognitive Data (인지 데이터 기반의 스텔스 행동 시뮬레이션)

  • Choi, Taeyeong;Na, Hyeon-Suk
    • Journal of Korea Game Society
    • /
    • v.16 no.2
    • /
    • pp.27-40
    • /
    • 2016
  • Predicting stealthy behaviors plays an important role in designing stealth games. It is, however, difficult to automate this task because human players interact with dynamic environments in real time. In this paper, we present a reinforcement learning (RL) method for simulating stealthy movements in dynamic environments, in which an integrated model of Q-learning with Artificial Neural Networks (ANN) is exploited as an action classifier. Experiment results show that our simulation agent responds sensitively to dynamic situations and thus is useful for game level designer to determine various parameters for game.

The Effect of Segment Size on Quality Selection in DQN-based Video Streaming Services (DQN 기반 비디오 스트리밍 서비스에서 세그먼트 크기가 품질 선택에 미치는 영향)

  • Kim, ISeul;Lim, Kyungshik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.10
    • /
    • pp.1182-1194
    • /
    • 2018
  • The Dynamic Adaptive Streaming over HTTP(DASH) is envisioned to evolve to meet an increasing demand on providing seamless video streaming services in the near future. The DASH performance heavily depends on the client's adaptive quality selection algorithm that is not included in the standard. The existing conventional algorithms are basically based on a procedural algorithm that is not easy to capture and reflect all variations of dynamic network and traffic conditions in a variety of network environments. To solve this problem, this paper proposes a novel quality selection mechanism based on the Deep Q-Network(DQN) model, the DQN-based DASH Adaptive Bitrate(ABR) mechanism. The proposed mechanism adopts a new reward calculation method based on five major performance metrics to reflect the current conditions of networks and devices in real time. In addition, the size of the consecutive video segment to be downloaded is also considered as a major learning metric to reflect a variety of video encodings. Experimental results show that the proposed mechanism quickly selects a suitable video quality even in high error rate environments, significantly reducing frequency of quality changes compared to the existing algorithm and simultaneously improving average video quality during video playback.

The simulation-based methods for the dynamic manufacturing environments in the assembly systems (조립 생산체계의 동적인 상황을 위한 시뮬레이션 적용 기법)

  • Kim, Day-Sung;Jeong, Peom-Jin;Park, Peom;Kim, Won-Joong;Kim, Man-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.56-60
    • /
    • 1996
  • In most dynamic manufacturing environments today, systems and processes are constantly changing. Simulation tools are required that can accurately model the system in detail, but still be easy to use, and allow rapid model redevelopment to react quickly for system changes. An object-oriented simulation modeling environment is presented to provide flexible modeling capabilities for simulation. Also, when simulating an assembly system, a large number of factors must be considered. Because of such complexities, simulation has been used as the primary method in designing, planning and analyzing. In this paper, the dynamic manufacturing environment is discussed for the assembly system. Also, an application method of simulation tools is presented with the experimental data from the automobile manufacturing shop to improve the productivity effectively.

  • PDF

A Migration Technique for Autonomous Mobile Agents in Dynamic Environments (동적 환경에 적합한 자율 이동 에이전트의 이주 기법)

  • Bok, Kyoung-Soo;Yeo, Myung-Ho;Yoo, Jae-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1084-1098
    • /
    • 2005
  • In this paper, we propose a migration technique for autonomous mobile agents suitable to dynamic environments. The proposed migration technique dynamically creates the itinerary of agents that considers states of networks and systems. In the migration of the agent, it first sends prefetching message to the next system. The system receives necessary data for migration in advance. Through this, we reduce the amount of the sending data and save the time for creating the instance of the agent. And it improves the execution efficiency by using the checkpoint-based recovery method that does not execute the agent again and recovers the process states even though the errors take place. To show superiority of the proposed technique, we compare the proposed method with the existing methods through various simulations.

Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

  • Kim, In-Ju
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents.