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Abstract 

 
The importance of indoor positioning has grown in numerous application areas such as 
emergency response, logistics, and industrial automation. In ships, indoor positioning is also 
needed to provide services to passengers on board. Due to the complex structure and dynamic 
nature of ship environments, conventional positioning techniques have limitations in providing 
accurate positions. Compared to other indoor positioning technologies, Bluetooth 5.1-based 
indoor positioning technology is highly suitable for ship environments. Bluetooth 5.1 attains 
centimeter-level positioning accuracy by collecting In-phase and Quadrature (IQ) samples 
from wireless signals. However, distorted IQ samples can lead to significant errors in the final 
estimated position. Therefore, we propose an indoor positioning method for ships that utilizes 
a Deep Neural Network (DNN) combined with IQ fingerprint maps to overcome the 
challenges associated with accurate location detection within the ship. The results indicate that 
the accuracy of our proposed method can reach up to 97.76%. 
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1. Introduction 

According to a report dated February 11, 2024, an illness outbreak aboard a Cunard Cruise 
Line ship has spread, now leaving at least 154 people experiencing symptoms such as vomiting 
and diarrhea, according to the U.S. Centers for Disease Control and Prevention [1]. Even 
though the COVID-19 pandemic has subsided, other viruses still pose a risk of causing 
widespread transmission in enclosed environments like cruise ships. In such settings, the speed 
and scope of virus transmission can be heightened. Therefore, timely isolation of close 
contacts onboard becomes particularly crucial to prevent rapid virus spread. However, 
traditional methods of identifying close contacts primarily rely on inquiries, which are not only 
inefficient but also prone to significant errors. To address this issue, a novel approach has been 
proposed in the literature [2], which involves tracking close contacts through Bluetooth signals. 
The core idea of this method lies in utilizing Bluetooth signals to estimate the positions of 
passengers on the ship and further analyzing the position to identify close contacts. A Close 
Contact Identification Algorithm (CCIA) suitable for ship environments is introduced in the 
literature [3]. The key concept of CCIA is to identify close contacts by computing the 
probability density of position. Therefore, the primary issue to address is indoor positioning 
on ships, which is also the focus of this paper. 

Indoor positioning has become increasingly important in various application domains, 
including emergency response, logistics, and industrial automation. In the domain of Indoor 
Positioning Systems (IPS), a variety of navigation technologies including accelerometers, 
gyroscopes, compasses, along with Radio Frequency Identification (RFID), Wi-Fi (Wireless 
Fidelity), and Bluetooth, play pivotal roles. These technologies are harnessed to emit 
positioning signals, which, when integrated with sophisticated algorithms, enable precise 
position tracking. Among these technologies, Bluetooth distinguishes itself by its notably 
lower energy consumption, allowing devices to transmit data over extended periods without 
frequent recharging. This is particularly advantageous over Wi-Fi, which is known for its 
substantial power demands, rendering it less suitable for battery-operated devices in ship 
environments where energy efficiency is paramount. Consequently, Wi-Fi-based tracking is 
often deemed less favorable for use in ship environments. 

Moreover, when comparing costs and operational range, Bluetooth emerges as more cost-
effective than Ultra-Wideband (UWB) and boasts a greater range than ZigBee, making it a 
superior choice in certain scenarios. RFID-based positioning systems necessitate a setup of 
tags, readers, and antennas, adding to the complexity and cost. In contrast, the advent of 
Bluetooth 5.1 technology simplifies this by only requiring tags and antennas for indoor 
positioning, offering a streamlined and efficient solution ideal for ship environments. Thus, 
Bluetooth 5.1 stands out as a promising approach for achieving accurate indoor positioning in 
ship environments, balancing both power efficiency and range.  Bluetooth Low Energy (BLE) 
tags can be attached to user devices, such as smartphones, to provide accurate indoor 
positioning [4].  

In wireless communication systems, the signal is often represented as a complex number in 
the form of In-phase (I) and Quadrature (Q) components, collectively known as In-phase and 
Quadrature (IQ) samples. Bluetooth 5.1 achieves centimeter-level positioning by collecting IQ 
samples of wireless signals. In Bluetooth 5.1 technology, IQ samples play a crucial role in 
accurately estimating the Angle of Arrival (AoA) for positioning [5]. Therefore, we create IQ 
fingerprint maps from the IQ samples collected at reference points (RPs) and combine them 
with Deep Neural Networks (DNNs) to address the indoor positioning problem on ships. 
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2. Related Works 
Traditional Bluetooth indoor positioning technology mainly relies on the Received Signal 
Strength Indicator (RSSI) between BLE beacons and receiving devices (such as smartphones) 
to estimate distances, thereby achieving indoor positioning [6]. Although widely used in 
various applications, traditional Bluetooth indoor positioning technology still has some 
drawbacks and limitations. Various factors in indoor environments, such as walls, doors, 
human bodies, and other obstacles, can interfere with Bluetooth signals, leading to fluctuations 
in RSSI that affect the accuracy of distance estimation and thus the overall precision of the 
positioning system. In indoor environments, Bluetooth signals may reflect, refract, or scatter, 
causing the same beacon signal to reach the receiver through multiple paths. This multipath 
effect introduces uncertainty in received signal strength, increasing positioning errors [7].  

Bluetooth 5.1 introduces Direction Finding functionality, including angle estimation 
techniques such as AoA. Utilizing IQ samples for positioning is a key component of AoA 
technology, which brings significant advantages to indoor positioning [8]. By leveraging IQ 
samples, AoA positioning technology can accurately measure the angle of signal arrival. This 
precise angle measurement enables the positioning system to calculate device positions more 
accurately, thereby greatly improving positioning accuracy. However, in ship environments, 
IQ samples are highly susceptible to distortion. 

The complex structure and dynamic nature of ship environments pose significant challenges 
to existing indoor positioning techniques. Due to the metallic environment of ships, multipath 
effects may occur. Multipath propagation is a significant issue in metallic environments like 
ships. When wireless signals encounter metal surfaces, they can be reflected, resulting in 
multiple copies of the transmitted signal at the receiver. These reflected signals can interfere 
with the original signal, leading to constructive or destructive interference, which can distort 
the received IQ samples and affect the overall performance of indoor positioning systems. In 
ship environments, the transmitted wireless signal can follow multiple paths due to reflection, 
diffraction, and scattering caused by the metallic structures. As a result, multiple delayed 
copies of the signal reach the receiver, which can cause inter-symbol interference and distort 
the received IQ samples. Distorted IQ samples can considerably affect the performance of 
indoor positioning systems, especially those that rely on AoA measurements, such as 
Bluetooth 5.1 technology. Utilizing severely distorted IQ samples for position estimation is 
not capable of achieving centimeter-level positioning accuracy.  

IQ samples can be used to estimate elevation and azimuth. Elevation and azimuth can be 
used to estimate position, which is the AoA localization method. Hence, the accuracy of 
elevation and azimuth becomes particularly crucial. Nonetheless, due to the influence of 
multipath effects, the estimation results of elevation and azimuth are often not precise enough. 
Thus, in the literature [9], a Mean Optimization Filter (MOF) is proposed to enhance the 
accuracy of the Bluetooth 5.1 AoA indoor positioning technology. The concept of MOF is to 
mitigate the impact of noisy data by identifying the optimal average within the dataset. 
Nevertheless, due to the continual changes in the surrounding environment, MOF cannot 
autonomously adjust relevant parameters from the data. Consequently, [10] introduces a Self-
Learning Mean Optimization Filter (SLMOF). SLMOF can automatically adjust relevant 
parameters based on real-time data to ensure the accuracy of the optimal average. However, 
since the AoA localization method requires estimating elevation and azimuth first using IQ 
samples, and then estimating position based on elevation and azimuth, this leads to further 
accumulation and amplification of errors. Therefore, our idea is to directly estimate position 
using IQ samples. There exists a complex mathematical relationship between IQ samples and 
positions. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO.4, April 2024                              1125 

Deep Neural Network (DNN), compared to traditional shallow neural networks, has a 
deeper structure, enabling it to learn more hierarchical and abstract feature representations, 
thus better capturing the complex relationships within data. Traditional neural networks 
require manual feature extractors, while DNN can directly learn features from raw data 
through end-to-end learning, avoiding the cumbersome process of manual feature engineering 
[11].  

Convolutional Neural Networks (CNNs) are primarily used for processing image data, and 
their ability to handle structured data (such as IQ samples) is relatively weak, whereas DNNs 
are better suited for handling structured data and can better learn the nonlinear relationships 
between data [12]. CNNs have a local perception in feature extraction, while DNNs can learn 
more abstract and global features at different levels, making them more suitable for handling 
data with complex feature relationships. Recurrent Neural Networks (RNNs) suffer from the 
problem of vanishing or exploding gradients when dealing with long sequences, whereas 
DNNs are relatively easier to train and optimize [13]. Long Short-Term Memory (LSTM) and 
Gated Recurrent Unit (GRU), because of their focus on handling data with temporal 
dependencies, perform well in fields such as language modeling, text generation, speech 
recognition, and time series prediction [14]. For fixed-length data points, such as the mapping 
relationship between IQ samples and positions, DNNs can directly learn decisive features from 
the data without considering temporal dependencies, making them more suitable for such tasks. 
In some cases, if the dataset lacks strong temporal characteristics, using LSTM or GRU may 
introduce unnecessary complexity without significant performance improvement.  

In summary, compared to traditional neural networks, CNNs, RNNs, LSTM, and GRU, 
DNNs have deeper structures, better feature learning capabilities, are more suitable for 
handling structured data, and are easier to optimize [15]. DNN exhibits significant robustness 
when handling the mathematical relationship between IQ samples and positions, especially in 
complex environments such as ship environments with metallic structures. In ship 
environments, metallic structures can induce signal reflection and scattering, further 
exacerbating multipath effects, which significantly affect the accuracy of localization methods 
based on traditional approaches. However, DNN, with its deep structure and sophisticated data 
processing capabilities, can effectively identify and learn the specific impact of these 
environmental factors on IQ samples. Therefore, they are more suitable for finding the 
mathematical relationship between IQ samples and positions.  

The role of the optimizer in a DNN is to minimize the loss function by adjusting the internal 
parameters of the network, such as weights and biases. The goal of a DNN is to learn the 
mapping from input data to output data for a specific task, such as classification or regression. 
During training, the optimizer iteratively adjusts the network parameters to make the network's 
output as close as possible to the ground truth, thereby reducing prediction error or loss. 

DNNs require optimizers because finding the optimal parameter combination directly is a 
complex and time-consuming task, especially considering the large number of parameters in 
a typical DNN. Optimizers employ various optimization algorithms, such as gradient descent 
and its variants, to automatically adjust parameters and minimize the loss function.  
Adam, RMSprop, Stochastic Gradient Descent (SGD), Adagrad, and Adamax are optimization 
algorithms commonly used in training DNNs [16]. Adam combines the benefits of RMSprop 
and momentum optimization, adjusting learning rates adaptively for each parameter. 
RMSprop adjusts learning rates based on the average of recent gradients, while SGD updates 
parameters using gradients of the loss function [17]. Adagrad adapts learning rates based on 
historical gradient information, and Adamax is a variant of Adam that uses the infinity norm 
for adaptive learning rates. Each optimizer has its strengths and weaknesses, and the choice 
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depends on factors like dataset size, network architecture, and computational resources. 
Experimentation with different optimizers and hyperparameters is often necessary to find the 
most effective optimization strategy for a given task. This paper aims to address these 
challenges by proposing a method of using IQ fingerprint maps based on DNN in ship 
environments. We determine the appropriate optimizer through multiple experiments.  

The originality of our work lies in using different neuron configurations to directly handle 
the complex relationship between IQ samples and position estimation. Through empirical 
studies of different model architectures, we demonstrate the effectiveness and adaptability of 
DNN in addressing this specific application. 

3. DNN for Bluetooth 5.1 Indoor Positioning with IQ Fingerprint Map 

3.1 Acquisition Method of IQ Samples 

Commonly, the RSSI fingerprint map serves as a prevalent technique for indoor positioning 
[18]. However, RSSI is vulnerable to multipath effects, which may result in signals reflecting 
off objects and traversing multiple routes before reaching the receiver [19]. Generally, 
Bluetooth RSSI values span from -26 to -100 as integers. Consequently, it becomes 
challenging to accurately depict wireless signal characteristics using RSSI alone.  
In products developed by Nordic Semiconductor, out-of-range IQ samples are capped at an 
integer value of -32768, signifying that the value range for IQ samples is considerably broader 
than that of the RSSI. According to the Bluetooth 5.1 Core Specification, the Constant Tone 
Extension (CTE) of a packet comprises a 4 μs guard period, an 8 μs reference period, and a 
specific number of antenna samples [20]. When a received packet contains an AoA CTE, the 
receiver must execute IQ sampling based on the rate and pattern established by the host. Fig. 
1 illustrates how to obtain IQ samples. The BLE tag sends Bluetooth signals to the 
surroundings, and upon receiving the Bluetooth signal, the AoA locator executes IQ sampling 
based on CTE. IQ represents a pair of data. In refers to the "I" component in the nth set of IQ 
data. Qn refers to the "Q" component in the nth set of IQ data. 
 

 
Fig. 1. The AoA locator (Rx) receives Bluetooth signals from the BLE tag (Tx) and performs IQ 

sampling 
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In ship environments, dealing with distorted IQ samples can be challenging. The main 
reasons for choosing DNN over other methods for handling distorted IQ samples are that 
DNNs are capable of automatically identifying and learning complex features from large-scale 
data, dealing with non-linear problems, and they possess strong generalization capabilities to 
handle unseen new samples. Moreover, their multi-layer architecture allows understanding 
data at different levels of abstraction. These advantages make DNNs more efficient and 
accurate for processing complex and distorted IQ samples compared to other methods. In this 
paper, a well-trained DNN with optimizer can be employed to classify the distorted IQ samples 
effectively. 

3.2 Adagrad optimizer in DNN 
Adagrad is an adaptive gradient descent algorithm designed to adjust the learning rate for each 
parameter. The core idea is to adapt the learning rate based on the frequency of parameter 
updates, using a smaller learning rate for frequently updated parameters and a larger learning 
rate for infrequently updated parameters. This differential adjustment makes Adagrad 
particularly suitable for handling sparse data [21]. 

In Adagrad, the algorithm first computes the gradient for each parameter and then adds the 
square of this gradient to an accumulated sum. This accumulated sum is subsequently used to 
adjust the learning rate for that parameter. Specifically, the learning rate is adjusted by dividing 
the global learning rate by the square root of the accumulated sum. Consequently, parameters 
with larger accumulated gradient sums have smaller learning rates, while those with smaller 
sums have larger learning rates. 

The adaptive learning rate mechanism of Adagrad reduces the need for manual adjustment 
of learning rates, and is able to automatically find a relatively reasonable learning rate across 
different stages and frequencies of parameter updates. 

Gt is a diagonal matrix, where each diagonal element Gt,ii represents the sum of squares of 
gradients for the ith parameter up to time step t. The core of the Adagrad algorithm is to 
maintain an accumulated square gradient Gt,ii for each parameter, which is the sum of squares 
of gradients up to the current time step. For each iteration, Gt,ii is updated as Eq. 1 [21]. 
 

𝐺𝐺𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑡𝑡−1,𝑖𝑖𝑖𝑖 + 𝑔𝑔𝑡𝑡,𝑖𝑖
2                                                        (1) 

 
Gt,ii starts with an initial value of 0 and gradually increases with each parameter update. gt,i 
represents the gradient of the ith parameter at time step t. When updating parameters, Adagrad 
adjusts the learning rate for each parameter according to the following Eq. 2. 
 

𝜃𝜃𝑡𝑡+1,𝑖𝑖 = 𝜃𝜃𝑡𝑡,𝑖𝑖 −
𝜂𝜂

�𝐺𝐺𝑡𝑡,𝑖𝑖𝑖𝑖+𝜖𝜖
𝑔𝑔𝑡𝑡,𝑖𝑖                                                (2) 

 
η is the global learning rate, and ϵ is a very small constant to avoid division by zero. In this 
way, the update step size for each parameter is adaptively adjusted, depending on its own 
historical gradient information. 

Through the mechanism described above, Adagrad assigns an adaptive learning rate to each 
parameter based on its historical gradient information. The learning rate for parameters 
gradually decreases as their gradient accumulates. This means that for parameters that are 
frequently updated, their learning rates are relatively low to avoid excessive updates caused 
by large step sizes. Conversely, for parameters that are infrequently updated, their learning 
rates are be relatively high due to their smaller accumulated gradient squares, thus promoting 
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faster learning for these parameters. The adaptive learning rate feature of Adagrad makes it 
particularly effective in handling datasets with sparse gradients, as it can provide larger update 
steps for parameters that are only occasionally updated, accelerating the learning process. 
Adagrad's role in DNNs is to adaptively adjust the learning rate for each parameter based on 
its gradient's historical information. This method effectively handles sparse data and non-
stationary objective functions, making the training process more stable and efficient. 

3.3 SGD optimizer in DNN 
SGD can assist DNN in effectively distinguishing distorted IQ samples because it optimizes 
models efficiently, handles large-scale data, and mitigates overfitting. This enables the DNN 
to learn key features to identify distorted IQ samples within complex, non-linear, and large-
scale datasets. Moreover, the randomness of SGD increases the diversity of the training 
process, enhancing the generalization capabilities of the model to better deal with new, unseen 
distorted samples. SGD can help DNNs achieve desirable performance. SGD is a simple yet 
efficient optimization algorithm that computes the gradient of the loss function with respect to 
each weight by using a small subset of the training data. The weight update as Eq. 3 [22]. 

𝑤𝑤 = 𝑤𝑤 − 𝑙𝑙𝑙𝑙 × 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

          (3) 

W represents the weights, lr is the learning rate, and dL/dW is the gradient of the loss function 
with respect to W. Ship environments are often characterized by high levels of noise, which 
can cause distortion in IQ samples. The inherent noise in SGD's weight updates allows it to be 
more robust in the presence of noisy data. SGD, as an optimization algorithm, plays a crucial 
role in deep learning models, including the DNN. One of the main reasons is its capability to 
help the model escape local minima during the learning process. 

DNN involves finding the minimum value of a loss function in a high-dimensional space, 
where each point corresponds to a set of model parameters. Within this high-dimensional space, 
the loss function often has multiple local minima, which might correspond to states where the 
model overfits specific data or fails to fully learn. 

3.4 DNN-based In-Ship Positioning 
Distorted IQ samples often contain more complex and harder-to-capture patterns, this makes 
the landscape of the loss function even more intricate with a higher number of local minima. 
If a DNN gets stuck in these local minima during training, it may result in a model that can 
only adapt to specific training samples and performs poorly when predicting new, unseen 
distorted samples. 

For example, the model may find a way to handle a specific type of noise in the training set 
at a local minimum, which performs well on the training set but fails when dealing with new 
distorted samples with different noise. In another case, the model may get stuck in a state at a 
local minimum where it's overly sensitive to specific sample features. This can result in good 
performance when handling samples containing these features but a decline in prediction 
ability for new samples without these features. Therefore, an optimizer is needed to reduce the 
occurrence of such situations. 

Fig. 2 illustrates the workflow of utilizing DNN for in-ship positioning. During the training 
phase, the IQ fingerprint maps are initially fed into a DNN for training, with the positions 
serving as labels, to enable the DNN to perform classification tasks. Subsequently, an 
optimizer is used to automatically adjust the relevant parameters of the DNN. 
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During the practical application phase, upon receiving a localization request, IQ samples 
are first obtained. These samples are then input into the pre-trained DNN, resulting in the 
corresponding position results. This process achieves accurate indoor positioning by learning 
patterns within the IQ fingerprint maps, providing real-time position information for various 
applications such as ship navigation, asset tracking, and resource management. 
Additionally, the adaptability of DNN to different environmental conditions and its 
generalization ability across various ship layouts and structures make it suitable for diverse 
ship environments. Furthermore, continuous updates and fine-tuning of the DNN model with 
newly acquired data can further enhance its accuracy and robustness in-ship positioning tasks. 
 

 

Fig. 2. Workflow of DNN with IQ fingerprint map for estimating position [23] 

4. Performance Evaluation 
We conduct an indoor positioning experiment to collect IQ samples from a test area situated 
on the upper deck of the HANNARA training ship used by students. The test area measures 7 
meters by 7.14 meters. Within test area, we design12 positions as reference points, as shown 
in Fig. 3.   

By optimizing the configuration of hidden layers and nodes, we aim to make the DNN more 
adaptable to complex data variations. For instance, increasing the depth and number of nodes 
in the hidden layers can enhance the model's representation capability, allowing it to better 
capture the data distortion caused by changes in the ship's internal layout. Moreover, 
appropriately adjusting the structure of hidden layers can make the model more flexible, aiding 
in its adaptation to different degrees and types of layout changes. The Sigmoid function 
possesses favorable non-linear properties, performing well when handling non-linear data. 
When changes occur in the ship's internal layout, the data may exhibit complex non-linear 
relationships, which the Sigmoid function is better equipped to capture. Consequently, this 
enhances the model's flexibility and robustness. Additionally, the Sigmoid function's 
smoothness helps mitigate issues such as gradient vanishing or exploding, thereby improving 
the stability of model training. 
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Fig. 3. Floor plan of upper deck in HANNARA ship with reference points 

These reference points are designated positions for fingerprint mapping. When IQ samples 
are input into the DNN, the corresponding reference points comes out as the final output. 
Totally, the neural network model comprises 44 input features, and 12 output neurons due to 
the reference points. 

The performance of DNN for estimating position is controlled variously by hyperparameters 
such as learning rate, batch size, and neuron size. But most of hyperparameters are decided by 
the used optimizer. 

The entire training is executed using grid search from the SciKeras package [24]. It 
combines library Keras used for deep learning and Scikit-Learn used for machine learning, 
which makes the function of grid search available even in deep learning. It observes the 
performance differences of models that use difference hyperparameters. The number of epochs 
is controlled by a callback function, which stops training when the lowest loss function is 
reached and recorded to measure the computational cost. 

Table 1 shows the values of the hyperparameters used in the training. SGD, Adagrad, 
RMSprop, Adam, and Adamax are used as optimizers. To distinguish between high and low 
learning rates, the learning rate is trained at 0.01, 0.1, and 1. The batch size is also trained at 
32, 64, and 128 for the same reason. Neuron sizes, also known as node sizes, refer to the sizes 
of hidden layers in the neural network. Two sets of neuron sizes are trained: (480, 240, 60) 
and (960, 480, 120), both using the Sigmoid function. These different configurations are used 
to distinguish varying accuracies based on the number of neurons in the layers. The neuron 
sizes are configured in two different settings for testing, namely (480, 240, 60) and (960, 480, 
120). We opt for these two configurations to explore how model complexity affects position 
accuracy. The larger neuron set (960, 480, 120) aims to provide higher model capacity to 
capture the complex relationship between IQ samples and positions. The smaller set (480, 240, 
60) is used to validate the performance of a lower-complexity model. Through this approach, 
we can evaluate the impact of model capacity on position accuracy and find the optimal 
balance between performance and complexity. 

 
Table 1. List of hyperparameters 

Hyperparameter Options 

Optimizer [SGD, Adagrad, RMSprop, 
Adam, Adamax] 

Learning Rate [0.01, 0.1, 1] 
Batch Size [32, 64, 128] 

Neuron Size [(480, 240, 60), (960, 480, 120)] 
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Table 2 outlines the layers of a DNN along with the sizes of neurons used in two different 
tests. The "Layer" column lists the different layers in the network, including the input, hidden, 
and output layers. The "Neuron Size (Test 1)" and "Neuron Size (Test 2)" columns specify the 
sizes of neurons in each layer for two separate tests. For example, in the hidden layer, Test 1 
has neuron sizes of 960, 480, and 120, while Test 2 has neuron sizes of 480, 240, and 60. The 
"Activation Function" column indicates the activation function used in each layer, with 
Sigmoid applied in the hidden layers and Softmax in the output layer.  

We choose the Sigmoid function as the activation function for the hidden layers because of 
its non-linear properties, enabling the model to learn complex decision boundaries. Although 
the Sigmoid function may lead to the vanishing gradient problem, in our case, we effectively 
mitigate this issue by carefully selecting the learning rate and other training parameters. 
Additionally, the smooth gradient characteristics of the Sigmoid function facilitate stable 
convergence during training. The main reason for using Softmax as the activation function in 
the output layer is its suitability for multi-class classification tasks and its ability to transform 
the neural network's output into a probability distribution. The Softmax function converts the 
raw scores outputted by the neural network into probability values between 0 and 1, where the 
sum of these probabilities is 1. This is crucial for classification tasks because it allows the 
model to output the probability of each class, enabling the determination of the most likely 
class based on these probabilities. Therefore, Softmax is widely used as the activation function 
in the output layer for classification tasks. 

 
Table 2. Layers of DNN 

Layer 
Neuron 

Size 
(Test 1) 

Neuron 
Size 

(Test 2) 

Activation 
Function 

Input 44 44  

Hidden 
960 480 

Sigmoid 480 240 
120 60 

Output 12 12 Softmax 
 

Fig. 4 represents the neural network architecture of a DNN, illustrating how it processes IQ 
samples to generate position results. In this diagram, the input layer receives data from IQ 
samples, which undergo preprocessing and feature extraction before being transmitted to the 
hidden layers. The hidden layers process the data through a series of neurons and weights, 
extracting key features and patterns. Subsequently, these features and patterns are passed to 
the output layer, where the position results are generated based on them. This process is 
achieved through complex connections between multiple layers and neurons within the DNN 
model, where the number and arrangement of neurons in each layer can influence the final 
position results. Thus, this diagram demonstrates how a DNN learns from IQ samples to infer 
position results, enabling indoor positioning functionality. 
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Fig. 4. Deep Neural Network Architecture Diagram: Indoor Positioning Model Based on IQ Samples 

Table 3 to 7 displays the training results for SGD optimizer. It lists various training settings 
including batch size, learning rate, neuron size, and the corresponding accuracy. Each row 
represents a training experiment where the model is trained multiple times with different 
parameter settings and evaluated for performance. From the table, it can be observed that with 
a batch size of 32, a learning rate of 0.1, and larger neuron size ([960 480 120]), the highest 
accuracy of 0.9776 is achieved. This indicates optimal performance under specific parameter 
configurations. Furthermore, these results provide valuable insights into the impact of different 
parameter settings on training outcomes, which can be utilized for adjusting and optimizing 
neural network models. 

Table 3. SGD training results 
Index Batch size Learning rate Neuron size Accuracy 

1 32 0.01 [960 480 120] 0.9684 
2 32 0.1 [960 480 120] 0.9776 
3 32 1 [960 480 120] 0.9721 
4 32 0.01 [480 240 60] 0.9592 
5 32 0.1 [480 240 60] 0.9675 
6 32 1 [480 240 60] 0.9636 
7 64 0.01 [960 480 120] 0.9648 
8 64 0.1 [960 480 120] 0.9739 
9 64 1 [960 480 120] 0.9751 

10 64 0.01 [480 240 60] 0.6811 
11 64 0.1 [480 240 60] 0.9680 
12 64 1 [480 240 60] 0.9705 
13 128 0.01 [960 480 120] 0.9519 
14 128 0.1 [960 480 120] 0.9711 
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15 128 1 [960 480 120] 0.9762 
16 128 0.01 [480 240 60] 0.1320 
17 128 0.1 [480 240 60] 0.9601 
18 128 1 [480 240 60]' 0.9708 

 

Table 4 presents the training results of the Adagrad optimizer, with each row representing 
a training experiment conducted with different parameter configurations. The model's 
performance is evaluated through multiple training runs. The results indicate that with a batch 
size of 64, learning rate of 0.1, and neuron size of [960 480 120], the model achieved the 
highest accuracy of 0.9758, demonstrating relatively stable performance. It is noteworthy that 
regardless of whether the learning rate is small (0.01) or large (1.0), the model's accuracy 
remains at a certain level, indicating the stability of Adagrad across different parameter 
settings. 

Table 4. Adagrad training results 
Index Batch size Learning rate Neuron size Accuracy 

1 32 0.01 [960 480 120] 0.9708  
2 32 0.1 [960 480 120] 0.9738  
3 32 1 [960 480 120] 0.9577  
4 32 0.01 [480 240 60] 0.9619  
5 32 0.1 [480 240 60] 0.9719  
6 32 1 [480 240 60] 0.9550  
7 64 0.01 [960 480 120] 0.9707  
8 64 0.1 [960 480 120] 0.9758  
9 64 1 [960 480 120] 0.9662  

10 64 0.01 [480 240 60] 0.9599  
11 64 0.1 [480 240 60] 0.9706  
12 64 1 [480 240 60] 0.9594  
13 128 0.01 [960 480 120] 0.9670  
14 128 0.1 [960 480 120] 0.9749  
15 128 1 [960 480 120] 0.9663  
16 128 0.01 [480 240 60] 0.9479  
17 128 0.1 [480 240 60] 0.9688  
18 128 1 [480 240 60]' 0.9606  

 

Table 5 presents the training results using the RMSprop optimizer. Each row represents a 
training experiment conducted with different parameter configurations, and the model's 
performance is evaluated accordingly. From Table 5, it can be observed that, with a batch size 
of 128 and a learning rate of 0.01, using larger neuron sizes [480 240 60] achieved a relatively 
higher accuracy of 0.9650. However, for other learning rates and neuron sizes, the model's 
accuracy generally remains low with minimal variation. Overall, RMSprop exhibits unstable 
performance under these parameter settings and does not demonstrate performance similar to 
other optimizers. 
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Table 5. RMSprop training results 
Index Batch size Learning rate Neuron size Accuracy 

1 32 0.01 [960 480 120] 0.9359 
2 32 0.1 [960 480 120] 0.0899 
3 32 1 [960 480 120] 0.0814 
4 32 0.01 [480 240 60] 0.9584 
5 32 0.1 [480 240 60] 0.0848 
6 32 1 [480 240 60] 0.0886 
7 64 0.01 [960 480 120] 0.9475 
8 64 0.1 [960 480 120] 0.0855 
9 64 1 [960 480 120] 0.0803 

10 64 0.01 [480 240 60] 0.9619 
11 64 0.1 [480 240 60] 0.0867 
12 64 1 [480 240 60] 0.0844 
13 128 0.01 [960 480 120] 0.9616 
14 128 0.1 [960 480 120] 0.0866 
15 128 1 [960 480 120] 0.0830 
16 128 0.01 [480 240 60] 0.9650 
17 128 0.1 [480 240 60] 0.0819 
18 128 1 [480 240 60]' 0.0851 

 
Table 6 presents the training results using the Adam optimizer. Each row represents a 

training experiment conducted with different parameter configurations, evaluating the model's 
performance. It can be observed from Table 6 that the model exhibits varying accuracy across 
different batch sizes, learning rates, and neuron sizes. For instance, with a batch size of 128 
and a learning rate of 0.01, relatively higher accuracy is achieved using smaller neuron sizes 
[480 240 60], reaching 0.9097. However, under other parameter settings, the model generally 
achieves lower accuracy. Overall, the Adam optimizer demonstrates some instability under 
these parameter configurations, with a considerable range of accuracy variations. 

Table 6. Adam training results 
Index Batch size Learning rate Neuron size Accuracy 

1 32 0.01 [960 480 120] 0.0859 
2 32 0.1 [960 480 120] 0.0879 
3 32 1 [960 480 120] 0.0818 
4 32 0.01 [480 240 60] 0.8237 
5 32 0.1 [480 240 60] 0.0864 
6 32 1 [480 240 60] 0.0851 
7 64 0.01 [960 480 120] 0.2771 
8 64 0.1 [960 480 120] 0.0813 
9 64 1 [960 480 120] 0.0814 

10 64 0.01 [480 240 60] 0.8866 
11 64 0.1 [480 240 60] 0.0814 
12 64 1 [480 240 60] 0.0883 
13 128 0.01 [960 480 120] 0.4889 
14 128 0.1 [960 480 120] 0.0870 
15 128 1 [960 480 120] 0.0860 
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16 128 0.01 [480 240 60] 0.9097 
17 128 0.1 [480 240 60] 0.0790 
18 128 1 [480 240 60] 0.0838 

 

Table 7 presents the training results using the Adamax optimizer. Each row corresponds to 
a training experiment, where multiple training runs are conducted with different parameter 
configurations, and the model's performance is evaluated based on accuracy. From Table 7, it 
can be observed that the model's accuracy varies across different batch sizes, learning rates, 
and neuron sizes. For instance, with a batch size of 32 and a learning rate of 0.01, the model 
achieved relatively high accuracy of 0.9745 when using larger neuron sizes [960 480 120]. 
However, there is fluctuation in accuracy across other parameter settings, with some cases 
showing comparatively lower accuracy. Overall, the Adamax optimizer demonstrates a degree 
of instability in these parameter configurations, with accuracy fluctuating across different 
settings. 

Table 7. Adamax training results 
Index Batch size Learning rate Neuron size Accuracy 

1 32 0.01 [960 480 120] 0.9745 
2 32 0.1 [960 480 120] 0.0873 
3 32 1 [960 480 120] 0.0850 
4 32 0.01 [480 240 60] 0.9722 
5 32 0.1 [480 240 60] 0.0869 
6 32 1 [480 240 60] 0.0899 
7 64 0.01 [960 480 120] 0.9715 
8 64 0.1 [960 480 120] 0.0900 
9 64 1 [960 480 120] 0.0836 

10 64 0.01 [480 240 60] 0.9738 
11 64 0.1 [480 240 60] 0.0809 
12 64 1 [480 240 60] 0.0835 
13 128 0.01 [960 480 120] 0.9678 
14 128 0.1 [960 480 120] 0.0852 
15 128 1 [960 480 120] 0.0820 
16 128 0.01 [480 240 60] 0.9700 
17 128 0.1 [480 240 60] 0.0854 
18 128 1 [480 240 60] 0.0845 

 
Fig. 5 displays the accuracy of different optimizers. The horizontal axis ranges from 0 to 

18, representing the index of different experiments, while the vertical axis ranges from 0 to 1, 
representing accuracy. RMSprop and Adam show significantly different results compared to 
the SGD and Adagrad. First, RMSprop exhibits higher performance with a learning rate of 
0.01, a batch size of 128 and smaller neuron sizes. Similarly, Adam also shows better 
performance with a learning rate of 0.01, a batch size of 128, and smaller neuron sizes. 
However, while RMSprop demonstrates stable performance with a learning rate of 0.01, 
Adam's performance can be quite poor when using a small batch size or larger neuron sizes, 
even with a learning rate of 0.01. In other words, Adam appears to be highly sensitive to 
hyperparameters. 
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Adamax is an extension version of Adam. It modifies the formula applied to the learning 
rate by using the maximum gradient value instead of accumulating past gradients. However, 
unlike Adam, besides showing optimal performance with a learning rate of 0.01, Adamax also 
performs well with 32, a low batch size, and higher neuron sizes, similar to SGD. 

Based on the evaluation of different optimizers, we can draw the following conclusions: 
SGD demonstrates stable and high performance, especially with larger learning rates and 
smaller batch sizes. Adagrad performs slightly inferior to SGD but still achieves decent 
performance under certain parameter settings. RMSprop performs well with smaller learning 
rates and larger batch sizes but exhibits relative instability with considerable performance 
fluctuations. Adam, similar to RMSprop, shows sensitivity, particularly towards smaller batch 
sizes and larger neuron sizes, resulting in potentially poorer performance. As an extension of 
Adam, Adamax demonstrates more stability in certain scenarios, particularly performing well 
with a learning rate of 0.01. Therefore, selecting the appropriate optimizer should consider 
factors such as model complexity, data characteristics, and stability requirements, possibly 
requiring multiple experiments to determine the best choice. 

 

 
Fig. 5. Accuracy Graph of Optimizers 

Table 8 and Table 9 show hyperparameters based on the best and worst results, respectively, 
depending on the optimizer used. They are arranged in order from the oldest to the most recent 
optimizer. One common observation from both tables is that when the training is controlled 
by a Callback function, which stops training when the loss function does not decrease, there 
is tendency to show higher accuracy as epochs increase. This suggests that the loss function 
may be stuck in a local minimum rather than a global minimum when the loss function doesn’t 
decrease. In other words, the hyperparameters shown in each Table 8 as yielding the best 
results can be interpreted as the optimal hyperparameters that enable the optimizer to escape 
from local minima. In Table 8, which shows the best cases, we can observe that SGD exhibits 
the highest accuracy, while Adam shows the lowest accuracy. 
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Table 8. Best cases of optimizers 
Optimizer Learning rate Batch Size Neuron Size Stop Epochs Accuracy 

SGD 0.1 32 [960, 480, 120] 100 0.977 

Adagrad 0.1 64 [960, 480, 120] 89 0.976 
RMSprop 0.01 128 [480, 240, 60] 86 0.965 

Adam 0.01 128 [480, 240, 60] 75 0.909 
Adamax 0.01 32 [960, 480, 120] 93 0.975 
 
On the other hand, in Table 9, which displays the worst cases, Adagrad oddly demonstrates 

a higher accuracy, whereas Adam exhibits the lowest accuracy. Based on these findings, we 
can conclude that SGD achieves the highest accuracy, Adagrad shows the most stable accuracy, 
and Adam has the lowest accuracy within the hyperparameters shown in Table 9. 

 
Table 9. Worst cases of optimizers 

Optimizer Learning rate Batch Size Neuron Size Stop Epochs Accuracy 

SGD 0.01 64 [480, 240, 60] 45 0.132 

Adagrad 0.01 128 [480, 240, 60] 63 0.947 
RMSprop 0.1 128 [960, 480, 120] 14 0.08 

Adam 0.1 128 [480, 240, 60] 14 0.079 
Adamax 0.1 64 [480, 240, 60] 14 0.08 
 
Adam is based on SGD and employs a complex equation. As indicated by the fewest epochs 

in Table 8, it demonstrates excellent efficiency in minimizing the use of computer resources. 
Nonetheless, due to its complexity, Adam has a lower optimization point and exhibits 
instability with specific hyperparameter. 

We collect IQ samples at 12 reference points and create an IQ fingerprint map. The IQ 
fingerprint map consists of IQ samples with position indices. We use the IQ fingerprint map 
as the training set, while the other IQ samples collected at reference points serve as the test set. 
We input the training set into the DNN and then evaluate the model's performance on the test 
set. By testing various batch sizes, learning rates, and layer sizes, we eventually obtain the best 
result. We find that when the batch size is 32, the learning rate is 0.1, and the neuron sizes of 
layer are [960, 480, 120], the test set's accuracy reaches its highest at 97.76%. 

In our concept, IQ samples from Bluetooth 5.1 can be substituted with corresponding data 
from other localization systems, such as WiFi, RFID, etc., such as Channel State Information 
(CSI) or RSSI. Therefore, our proposed method can be easily transferred to other localization 
systems and is not solely dependent on Bluetooth 5.1 technology. 

Incremental learning, as a method that enables models to continuously learn from new data 
and adapt to new circumstances, provides an effective framework for gradually improving 
positioning performance without the initial need for large amounts of training data [25]. 
Incremental learning is particularly suited for dynamic environments, such as our application 
scenario of positioning in ship metal environments, as it allows the model to adapt to subtle 
environmental changes, such as variations in ship structures, seasonal changes, or other factors 
that may affect signal characteristics. By continuously integrating newly collected IQ sample 
data into the training process, the model can automatically enhance accuracy and robustness 
over time. In the next stage of research, we explore how to integrate incremental learning 
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methods to further investigate the positioning performance of DNN models in ship 
environments. 

5. Conclusions 
We evaluate the proposed method in a real ship environment. Firstly, we collect IQ samples 
at 12 reference points. Secondly, we use the collected IQ samples as the training set and the 
other collected IQ samples as the test set. Finally, we input the training set into the DNN and 
evaluate the training performance on the test set. Among the various hyperparameters tested 
by DNN, we know that the optimizer shows a significant difference in performance. Therefore, 
various hyperparameters are tested based on the optimizer, and finally, with SGD, we find that 
when the batch size is 32, the learning rate is 0.1, and the neuron sizes of layer are [960, 480, 
120], the test set's accuracy reaches its highest at 97.76%. 
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