• Title/Summary/Keyword: Dynamic Demands

Search Result 364, Processing Time 0.028 seconds

Development of Inventory Control System for Large-scale Retailers using Neural Network and (s*,S*) Policy (신경회로망과 (s*,S*) 정책을 이용한 대규모 유통업을 위한 재고 관리 시스템의 개발)

  • 김우주
    • The Journal of Information Systems
    • /
    • v.6 no.1
    • /
    • pp.223-256
    • /
    • 1997
  • Since the business scales of retailing companies become to be very large and the number of items dealt increases explosively, automation of inventory management becomes one of the most important issues to solve in retailing industry. In order to accomplish this automation of inventory management, there must be a great need to a method which can perform real-time decision making on inventory control in an automatic fashion, while communicating with inventory information systems like POS system and automatic warehousing system. But even in this circumstance, there are also many obstructions to such automation like varying demands, limited capacity of warehouse and exhibition room, need for strategic consideration on inventory control, etc., in a real sense. Due to these reasons, it seems very difficult that most large-scaled retailing companies get fully automated inventory management system. To overcome those difficulties and reflect them into inventory control, we propose a automated inventory control methodology for retailing industry based on neural network and policy model. Especially, policy model is devised to deal with dynamic varying demands and using this model, strategic goals on inventory can be considered into inventory control mechanism. Our proposed approach is implemented in workstation and its performance is also empirically verified also against to real case of one of the major retailing firm in Korea.

  • PDF

Analysis of Anisotropic Characteristic in Fiber Reinforced Polymer for the Knee Brace Using the Eddy Current Inspection (와전류 탐상기법을 이용한 무릎보조기용 섬유강화 폴리머의 이방특성 분석)

  • Kim, Cheol-Woong;Park, Cheon-Woong;Shin, Yong-Hoon;Seo, Hae-Young;Lee, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1533-1538
    • /
    • 2008
  • The development of new material systems like Carbon Fiber Reinforced Polymer (CFRP) places ever higher demands on the techniques for non-destructive material characterisation. Image-producing eddy current methods also need to satisfy these demands. Eddy-current imaging of FRP is based on the anisotropic electrical properties of the material investigated. Significant differences in conductivity between carbon fibres, polymer matrix and integrated functional components can be found. The availability of high-resolution sensors enables access to the local distribution of the electromagnetic properties. The static and dynamic procedures for isolating influential characteristics, already in use in eddy-current technology, can now be supplemented by topographical images. The precondition for a successful implementation of the eddy-current procedure is a deeper understanding of the image-generating process which allows correct interpretation of the images obtained.

  • PDF

Review for Features of Wafer In-feed Grinder Structure (실리콘 웨이퍼 단면 연삭기 구조물 특성평가)

  • Ha S.B.;Choi S.J.;Ahn D.K.;Kim I.S.;Choi Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.555-556
    • /
    • 2006
  • In recent years, the higher flatness level in wafer shape has been strictly demanded with a high integration of the semiconductor devices. It has become difficult for a conventional wafer preparing process to satisfy those demands. In order to meet those demands, surface grinding with in-feed grinder is adopted. In an in-feed grinding method, a chuck table fur fixing a semiconductor wafrr rotates on its rotation axis with a slight tilt angle to the rotation axis of a cup shaped grinding wheel and the grinding wheel in rotation moves down to grind the wafer. So, stability of the grinder structure is very important to aquire a wafer of good quality. This paper describes the features of the in-feed grinder and some FEM analysis results of the grinder structure.

  • PDF

Damage Potential of a Domestic Metropolitan Railway Bridge subjected to 2016 Gyeongju Earthquake (2016년 경주지진에 의한 국내 도시철도 교량의 잠재적 손상평가)

  • Lee, Do Hyung;Shim, Jae Yeob;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.461-472
    • /
    • 2016
  • Damage potential has been investigated for a domestic metropolitan railway bridge subjected to 2016 Gyeongju earthquake which has been reported as the strongest earthquake in Korea. For this purpose, nonlinear static pushover analyses for the bridge piers have been carried out to evaluate ductility capacities. Then, the capacities have been compared with those suggested by Railway Design Standards of Korea. This comparison shows that all piers possess enough safety margins. Nonlinear dynamic time-history analysis has also been conducted to estimate both displacement and shear force demands for the bridge subjected to ground motions recorded at stations in near of Gyeongju. Maximum demands reveal that response under the ground motions remains essentially in elastic. In addition, for a further assessment of the bridge under the Gyeongju earthquake, fragility analyses have been performed using those ground motions. The fragility results indicate that the recorded earthquakes do not significantly affect the damage exceedance probability of the bridge piers.

Seismic Performance Assessment of a Mid-Rise RC Building subjected to 2016 Gyeongju Earthquake (2016년 경주지진에 의한 중층 RC 건물의 내진 성능 평가)

  • Lee, Do Hyung;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.473-483
    • /
    • 2016
  • In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.

Performance of Fuel Cell System for Medium Duty Truck by Cooling System Configuration (상용차용 고분자 전해질 연료전지 냉각시스템 배열에 따른 성능 특성)

  • WOO, JONGBIN;KIM, YOUNGHYEON;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.236-244
    • /
    • 2021
  • Fuel cell systems for medium duty truck require high power demands under driving. Since high power demands results in significant heat generation, thermal management is crucial for the performance and durability of medium duty truck. Therefore, various configurations of dual stacks with cooling systems are investigated to understand appropriate thermal management conditions. The simulation model consists of a dynamic fuel cell stack model, a cooling system model equipped with a controller, and the mounted controller applies a feedback controller to control the operating temperature. Also, In order to minimize parasitic power, the comparison of the cooling systems involved in the arrangement was divided into three case. As a result, this study compares the reaction of fuel cells to the placement of the cooling system under a variety of load conditions to find the best placement method.

Traffic Forecast Assisted Adaptive VNF Dynamic Scaling

  • Qiu, Hang;Tang, Hongbo;Zhao, Yu;You, Wei;Ji, Xinsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3584-3602
    • /
    • 2022
  • NFV realizes flexible and rapid software deployment and management of network functions in the cloud network, and provides network services in the form of chained virtual network functions (VNFs). However, using VNFs to provide quality guaranteed services is still a challenge because of the inherent difficulty in intelligently scaling VNFs to handle traffic fluctuations. Most existing works scale VNFs with fixed-capacity instances, that is they take instances of the same size and determine a suitable deployment location without considering the cloud network resource distribution. This paper proposes a traffic forecasted assisted proactive VNF scaling approach, and it adopts the instance capacity adaptive to the node resource. We first model the VNF scaling as integer quadratic programming and then propose a proactive adaptive VNF scaling (PAVS) approach. The approach employs an efficient traffic forecasting method based on LSTM to predict the upcoming traffic demands. With the obtained traffic demands, we design a resource-aware new VNF instance deployment algorithm to scale out under-provisioning VNFs and a redundant VNF instance management mechanism to scale in over-provisioning VNFs. Trace-driven simulation demonstrates that our proposed approach can respond to traffic fluctuation in advance and reduce the total cost significantly.

An equivalent linear SDOF system for prediction of nonlinear displacement demands of non-ductile reinforced concrete buildings with shear walls

  • Saman Yaghmaei-Sabegh;Shabnam Neekmanesh;Nelson Lam;Anita Amirsardari;Nasser Taghizadieh
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.655-664
    • /
    • 2023
  • Reinforced concrete (RC) shear wall structures are one of the most widely used structural systems to resist seismic loading all around the world. Although there have been several efforts to provide conceptually simple procedures to reasonably assess the seismic demands of structures over recent decades, it seems that lesser effort has been put on a number of structural forms such as RC shear wall structures. Therefore, this study aims to represent a simple linear response spectrum-based method which can acceptably predict the nonlinear displacements of a non-ductile RC shear wall structure subjected to an individual ground motion record. An effective period and an equivalent damping ratio are introduced as the dynamic characteristics of an equivalent linear SDOF system relevant to the main structure. By applying the fundamental mode participation factor of the original MDOF structure to the linear spectral response of the equivalent SDOF system, an acceptable estimation of the nonlinear displacement response is obtained. Subsequently, the accuracy of the proposed method is evaluated by comparison with another approximate method which is based on linear response spectrum. Results show that the proposed method has better estimations for maximum nonlinear responses and is more utilizable and applicable than the other one.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

THE PSANNING, CONSTRUCTION AND ADMINISTRATION OF AUTOMOBILES PARKING LOTS IN SHANGHAI (상해기동차사회정차장(고)적 규화, 건설여관리)

  • GE MING MING
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.05a
    • /
    • pp.239-250
    • /
    • 1995
  • With speeding up the process of being international municipality, the gravity of lacking parking lots in Shanghai urban area, which directly blocks the traffic in the city, has been revealed. This thesis analyses present automobiles parking capability and forecasts the future's needs for the city. To solve the problem, the concept could be to expand parking areas in city center recently to relax the tention and to do thoughtful planning in the near future on the foundation of fully consideration the trend. The municipal government has to set up policy properly, amplify regulations, strenthern the administration and open up a path to raise founds. Berween road system administration which is dynamic and parking lot system administration which is static, there are a knot on macroscopic meaning and an interference as well. The coordination of these two systems would be reflested on the effects of whole municipal traffic adminisration. Basically, public parking lots are city's foundal facilities, just like roads, bridges, etc. The main problems now in Shanghai are large parking space demands, insufficient facilities, cheap parking expenses comparing with the cost of parking lots construcion and poor administration. According to the forecast on social economy development, there will be 580 thousand automobiles in Shanghai by the year 2000, and the amount of private cars will increase greatly. The frequency of automobiles going out will be 1.45 million per day. Public parking lots being able to afford 105 thousand units are needed. To satisfy the demands, the recent aim of planning should be speed up the parking lots construction, the planning objective in next period should be developing reasonably and exceed the demands properly. In order to realize the planning objective, the government has to formulate correct policy and amplify administration regulations. The government has to adopt both administration and economy means, including charging parking people reasonably, collect necessary taxes, bringing the parking lots planning into general municipality planning, opening up an effective path to raise founds, such as set up founds for parking lots construction, issue bonds and stocks, get loans at home and abroad, etc.

  • PDF