Acknowledgement
이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구입니다 (10084611) (20011907).
References
- L. Wang, A. Husar, T. Zhou, and H. Liu, "A parametric study of PEM fuel cell performances", Int. J. Hydrogen Energy, Vol. 28, No. 11, 2003, pp. 1263-1272, doi: https://doi.org/10.1016/S0360-3199(02)00284-7.
- S. L. Chavan and D. B. Talange, "Modeling and performance evaluation of PEM fuel cell by controlling its input parameters", Energy, Vol. 138, 2017, pp. 437-445, doi: https://doi.org/10.1016/j.energy.2017.07.070.
- J. T. Pukrushpan, "Modeling and control of fuel cell systems and fuel processors [dissertation]", University of Michigan, 2003. Retrieved from http://www-personal.umich.edu/~annastef/FuelCellPdf/pukrushpan_thesis.pdf.
- G. Vasu and A. K. Tangirala, "Control-orientated thermal model for proton-exchange membrane fuel cell systems", Journal of Power Sources, Vol. 183, No. 1, 2008, pp. 98-108, doi: https://doi.org/10.1016/j.jpowsour.2008.03.087.
- J. C. Amphlett, R. F. Mann, B. A. Peppley, P. R. Roberge, and A. Rodrigues, "A model predicting transient responses of proton exchange membrane fuel cells", Journal of Power sources, Vol. 61, No. 1-2, 1996, pp. 183-188, doi: https://doi.org/10.1016/S0378-7753(96)02360-9.
- H. Pourrahmani, M. Siavashi, and M. Moghimi, "Design optimization and thermal management of the PEMFC using artificial neural networks", Energy, Vol. 182, 2019, pp. 443-459, doi: https://doi.org/10.1016/j.energy.2019.06.019.
- H. Pourrahmani, M. Moghimia, and M. Siavashi, "Thermal management in PEMFCs: the respective effects of porous media in the gas flow channel", Int. J. Hydrogen Energy, Vol. 44, No. 5, 2019, pp. 3121-3137, doi: https://doi.org/10.1016/j.ijhydene.2018.11.222.
- I. S. Lim, J. Y. Park, E. J. Choi, and M. S. Kim, "Efficient fault diagnosis method of PEMFC thermal management system for various current densities", Int. J. Hydrogen Energy, Vol. 46, No. 2, 2021, pp. 2543-2554, doi: https://doi.org/10.1016/j.ijhydene.2020.10.085.
- P. Hu, G. Y. Cao, X. J. Zhu, and M. Hu, "Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 35, No. 17, 2010, pp. 9110-9123, doi: https://doi.org/10.1016/j.ijhydene.2010.06.046.
- A. Rabbani and M. Rokni, "Dynamic characteristics of an automotive fuel cell system for transitory load changes", Sustainable Energy Technologies and Assessments, Vol. 1, 2013, pp. 34-43, doi: https://doi.org/10.1016/j.seta.2012.12.003.
- J. Han, J. Park, and S. Yu, "Control strategy of cooling system for the optimization of parasitic power of automotiv e fuel cell system", Int. J. Hydrogen Energy, Vol. 40, No. 39, 2015, pp. 13549-13557, doi: https://doi.org/10.1016/j.ijhydene.2015.08.067.
- N. S. Ap, P. Guerrero, and P. Jouanny, "Influence of fan system electric power on the heat performance of engine cooling module", SAE International in United States, 2003, doi: https://doi.org/10.4271/2003-01-0275.
- S. Yu and D. Jung, "A study of operation strategy of cooling module with dynamic fuel cell system model for transportation application", Renewable Energy, Vol. 35, No. 11, 2010, pp. 2525-2532, doi: https://doi.org/10.1016/j.renene.2010.03.023.
- J. Han and S, Yu, "Ram air compensation analysis of fuel cell vehicle cooling system under driving modes", Applied Thermal Engineering, Vol. 142, 2018, pp. 530-542, doi: https://doi.org/10.1016/j.applthermaleng.2018.07.038.
- Y. Saygili, I. Eroglu, and S. Kincal, "Model based temperature controller development for water cooled PEM fuel cell systems", Int. J. Hydrogen Energy, Vol. 40, No. 1, 2015, pp. 615-622, doi: https://doi.org/10.1016/j.ijhydene.2014.10.047.