• Title/Summary/Keyword: Dynamic Contact Force

Search Result 371, Processing Time 0.028 seconds

On Dynamic Contact Force Measurement of the Pantograph (판토그라프의 동적 접촉력 측정에 관한 연구)

  • 백인혁;김정수;조용현;최강윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.780-785
    • /
    • 2001
  • A method for accurate measurement of the contact force in the current collection system of the high-speed railway is developed. In order to measure the contact force with minimal modifications to the pantograph, strain gauges are attached to the bottom of the contact strip. An algorithm for deriving the magnitude and stagger of the contact force from the bending strain measurements is devised. For the sample pantograph, the static contact forces are measured to within ${\pm}$5 % error for the magnitude and ${\pm}$ 2cm error for the stagger. For dynamic contact force measurement, it is found that the contact strip can the regarded as a rigid body for the contact frequency of less than 15 ㎐.

  • PDF

A Study on the Characteristics of the Tube-to-Support Dynamic Impact Force Measurement Facility (튜브와 지지대 사이의 동적상호 충격력 측정장치 특성규명에 관한 연구)

  • 김일곤;박진무
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.95-106
    • /
    • 1995
  • Flow-induced vibration in heat exchanger (or fuel rod) in nuclar power plant can cause dynamic interactions between tubes and tube supports resulting in fretting-wear. To increase the reliability and design life of heat exchanger components, design criteria that establish acceptable limits of vibration and minimize fretting wear are necessary. The fretting-wear rate is dependent upon material combination, contact configuration, environmental conditions and tube-to tube support dynamic interaction. It is demostrated that the fretting -wear rate correlates well with tube-to-support contact force or work rate. The tube-to-support dynamic interaction, which consists of dynamic contact forces and tube motion, is used to relate single-span wear data to real heat exchanger configurations consisting of multi-span tube bundles. This paper describes the test facility to measure tube-to-support dynamic impact force and reports its dynamic characteristics through the four impact tests - a force transduces independent and external impact tests, central ring inside impact test and additional cylinder impact test. Through the tests the impact parameter change dependent upon the material difference of impacting ball is studied, and the impact parameters of Force Transducer Assembly components are measured. And also the dynamic behavior of Force Transducer Assembly is analyzed. The force measurement technique herein is shown to provide a reasonable measure of dynamic contact forces.

  • PDF

Dynamic Wheel/Rail Contact Force due to Rail Irregularities (레일의 상하방향 불규칙성에 의한 차륜과 레일의 동 접촉력)

  • 이현엽
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.616-622
    • /
    • 1998
  • An analytical method has been developed to estimate the dynamic contact force between wheel and rail when trains are running on rail with vertical irregularities. In this method, the effect of Hertzian deformation at the contact point is considered as a linearized spring and the wheel is considered as an sprung mass. The rail is modelled as a discretely-supported Timoshenko beam, and the periodic structure theory was adopted to obtain the driving-point receptance. As an example, the dynamic contact force for a typical wheel/rail system was analysed by the method developed in this research and the dynamic characteristics of the system was also discussed. It is revealed that discretely-supported Timoshenko beam model should be used instead of the previously used continuously-supported model or discretelysupported Euler beam model, for the frequency range above several hundred hertz.

  • PDF

A Catenary System Analysis for Studying the Dynamic Characteristics of a High Speed Rail Pantograph

  • Han, Chang-Soo;Park, Tong-Jin;Kim, Byung-Jin;Wang, Young-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.436-447
    • /
    • 2002
  • In this study, the dynamic response of a catenary system that supplies electrical power to high-speed trains is investigated. One of the important problems which is accompanied by increasing the speed of a high-speed rail, is the performance of stable current collection. Another problem which has been encountered, is maintaining continuous contact force between the catenary and the pantograph without loss of panhead. The dynamic analyses of the catenary based on the Finite Element Method (FEM) are performed to develop a pantograph suitable for high speed operation. The static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing the force of a constantly moving load and the contact force were calculated. It was confirmed that a catenary model is necessary to study the dynamic characteristics of the pantograph system.

Study on the Current Collection Characteristics and Improvement Methods of Simple Catenary Systems (도시철도 simple catenary 가선구조에서의 집전성능 향상방안에 관한 연구)

  • Park Yong Cheol;Chang Sang-Hoon;Song Joong Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1360-1365
    • /
    • 2004
  • The decisive criteria to determine collection performance is the contact force between pantograph and catenary. The contact force consists of a static force and dynamic force related to vibration characteristics, train speed and etc. The low contact force leads to the loss of contact, and most countries regulate it below $3\∼5\%$ at operation speed. This study presents a technical overview of criteria for collection performance and modelling and simulation methods to analyze dynamic characteristics of catenary.

  • PDF

Dynamic Analysis of the Beam Subjected to the Axial Load and Moving Mass (이동질량 및 축 하중의 영향을 받는 보의 동적 거동)

  • Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.271-279
    • /
    • 2011
  • In this study, the dynamic analysis of a beam is analyzed by using the finite element method when the beam has moving mass and axial load. To consider the contact force between the moving mass and beam, coupled nonlinear equations of contact dynamics are derived, and then the weak form for the finite element method is established. The finite element computer programs based on the Lagrange multiplier method are developed to compute the contact force. Furthermore, a variety of simulations are performed for various design parameters such as moving mass velocity, compressive axial load and tension load. Finally, relations between the dynamic response and contact force are also discussed.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Contact Parameter Computation and Analysis of Air Circuit Breaker with Permanent Magnet Actuator

  • Fang, Shuhua;Lin, Heyun;Ho, S.L.;Wang, Xianbing;Jin, Ping;Huang, Yunkai;Yang, Shiyou
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.595-602
    • /
    • 2013
  • An air circuit breaker (ACB) with novel double-breaker contact and permanent magnet actuator (PMA) is presented. Three-dimensional (3-D) finite element method (FEM) is employed to compute the electro-dynamic repulsion forces, including the Holm force and Lorentz force, which are acting on the static and movable contacts. The electro-dynamic repulsion forces of different contact pieces are computed, illustrating there is an optimal number of contact pieces for the ACB being studied. The electro-dynamic repulsion force of each contact, which varies from the outer position to the inner position, is also computed. Finally, the contacts of the double-breaker are manufactured according to the analyzed results to validate the simulations.

The Dynamic Characteristics Analysis Between Pantograph and Catenary System Using Block Pulse Function (블럭펄스함수를 이용한 판토그래프와 가선시스템사이의 동특성 해석)

  • Shin, Seung-Kwon;Song, Yong-Soo;Eum, Ju-Hwan;Eum, Ki-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.748-750
    • /
    • 2004
  • The pantograph should supply the electrification equipments of a train with the current from the overhead catenary system over a broad range of speeds. For a high-speed electrical train, the dynamic interaction between the pantograph and the overhead catenary system causes the variation of the contact force. As the operational speed increases, the variation of the contact force increases. The contact force variation can cause contact losses, arcing and sparking. If the spark happens between the pantograph and the overhead catenary system, the EMI(electro magnetic interface) and noises may occur. After all, the quality of current collection is deteriorated. This paper deals with the dynamic characteristics analysis between pantograph and catenary system using block pulse function.

  • PDF

Developement of the Wheel-Rail Contact Algorithm and Dynamic Analysis (휠-레일 접촉 알고리즘 개발 및 동역학 해석)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Kim, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.963-969
    • /
    • 2010
  • The railway vehicle consists of wires, bodies, bogies and wheelsets, and each part has very complex mechanism. In this paper, wheel-rail contact algorithm is implemented using C++ and inserted into the ODYN which is a dynamic analysis program. To analyze wheel-rail contact mechanism, information such as contact points, contact angle and rolling radius is calculated according to the wheel and rail profile. Using this information, a table for the calculation of the wheel-rail contact analysis is made according to the lateral displacement. And, the creepage and normal force are calculated and a creep force is estimated by the FASTSIM. To verify the reliability of the wheel-rail contact algorithm, results of the program are compared with the ADAMS/Rail and paper. Finally, a wheelset of the railway vehicle is modeled using ODYN and simulated static and dynamic analysis. And, to verify the reliability of the simulation results, a displacement, velocity, acceleration and force are compared with results of ADAMS/Rail.

  • PDF