• Title/Summary/Keyword: Dynamic Compression

Search Result 603, Processing Time 0.029 seconds

PDOCM : Fast Text Compression on MasPar Machine (PDOCM : MasPar머쉰상의 새로운 압축기법과 빠른 텍스트 축약)

  • Min, Yong-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 1995
  • Due to rapid progress in data communications, we are able to acquire the information we need with ease. One means of achieving this is a parallel machine such as the MasPar. Although the parallel machine makes it possible to receive/transmit enormous quantities of data, because of the increasing volume of information that must be processed, it is necessary to transmit only a minimal amount of data bits. This paper suggests a new coding method for the parallel machine, which compresses the data by reducing redundancy. Parallel Dynamic Octal Compact Mapping (PDOCM) compresses at least 1 byte per word, compared with other coding techniques, and achieves a 54.188-fold speedup with 64 processors to transmit 10 million characters.

  • PDF

The Experimental Research for the Combustion and Dynamic Characteristics of the Linear Engine on the Variable Spring Stiffness (압축기-연소실 일체형인 리니어엔진의 스프링 강성에 따른 연소 및 동적 특성 연구)

  • Lee, Jaewan;Oh, Yongil;Kim, Gangchul;Lim, Ocktaeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.619-627
    • /
    • 2012
  • This study was experimentally investigated on the effects of spring stiffness applied to linear compressor chambers. The springs prevented piston head from colliding with engine cover, stored the kinetic energy and regenerated the kinetic energy. The linear engine has two combustion chambers and four compressor chamber. The combustion chamber bore size was 30 mm, maximum stroke was 31 mm and effective stroke volume was 25.45 cc respectively. The spring stiffness was varied such as 0, 0.5, 1.00, 2.9 and 14.7 N/mm. The linear engine was fueled with premixed LPG (propane 99%) and air by pre-mixture device. As an experimental result, The stroke, piston velocity and the piston frequency were increased by high spring stiffness. Also, thermal efficiency was grown. because the increased stroke made the higher compression ratio. In conclusion, electric power and efficiency were improved.

Appraisement of Design Parameters through Fluid Dynamic Analysis in Thermal Vapor Compressor (열 증기 압축기 내의 유동해석을 통한 설계 인자들의 영향 분석)

  • Park I. S.;Kim H. W.;Kim Y. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.155-158
    • /
    • 2002
  • In general, TVC(Thermal Vapor Compressor) is used to boost/compress a low pressure vapor to a higher pressure for further utilization. The one-dimensional method is simple and reasonably accurate, but cannot realize the detail as like the back flow and recirculation in the mixing chamber, viscous shear effect, and etc. In this study, the axisymmetric How simulations have been performed to reveal the detailed flow characteristics for the various ejector shapes. The Navier-Stokes and energy equations are solved together with the continuity equation In the compressible flow fields. The standard $k-{\epsilon}$ model is selected for the turbulence modeling. The commercial computational fluid dynamic code FLUENT software is used for the simulation. The results contain the entrainment ratio under the various motive, suction and discharge pressure conditions. The numerical results are compared with the experimental data, and the comparison shows the good agreement. The three different flow regimes (double chocking, single chocking and back flow) have been clearly distinguished according to each boundary pressure values. Also the effects of the various shape variables (nozzle position, nozzle outlet diameter, mixing tube diameter, mixing tube converging angle, and etc.) are quantitatively discussed.

  • PDF

Elasto-plastic damage modelling of beams and columns with mechanical degradation

  • Erkmen, R. Emre;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.315-323
    • /
    • 2017
  • Within the context of continuum mechanics, inelastic behaviours of constitutive responses are usually modelled by using phenomenological approaches. Elasto-plastic damage modelling is extensively used for concrete material in the case of progressive strength and stiffness deterioration. In this paper, a review of the main features of elasto-plastic damage modelling is presented for uniaxial stress-strain relationship. It has been reported in literature that the influence of Alkali-Silica Reaction (ASR) can lead to severe degradations in the modulus of elasticity and compression strength of the concrete material. In order to incorporate the effects of ASR related degradation, in this paper the constitutive model of concrete is based on the coupled damage-plasticity approach where degradation in concrete properties can be captured by adjusting the yield and damage criteria as well as the hardening moduli related parameters within the model. These parameters are adjusted according to results of concrete behaviour from the literature. The effect of ASR on the dynamic behaviour of a beam and a column are illustrated under moving load and cyclic load cases.

A Study on Performance and Reactor Behavior of Chemical Refrigerator (화학식 냉동기의 성능 및 반응기 거동에 관한 연구)

  • Park, Seung-Hoon;Lee, Jong-Ho
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-95
    • /
    • 1997
  • A chemical heat pump based on the reversible reactions between metal chlorides and ammonia gas is attractive alternative to compression system and liquid absorption systems in cooling and refrigerating fields. The advantages of chemical heat pump are no regulatory constants due to CFC refrigerants, utilization of gas, industrial waste heat, electricity, fuel oil etc. as heat sources and wide applications to energy storage system, large-scale energy managements for industrial process. The scale-up of chemical heat pump from laboratory prototype to pilot plants necessitates the interpretation of system performance and evaluation of dynamic behavior in the chemical reactor. This study contains the prediction of performance of chemical refrigerator according to operating condition, the dynamic simulations through reactor modelling, which is used for the calculation of reactive medium temperature and the conversion variation with reactor cooling temperature, and the effect survey of block parameters on the power of refrigerator.

  • PDF

Contact Analysis between Rubber Seal, a Spherical Wear Particle and Steel Surface (시일과 스틸면 사이의 구형 마멸입자에 의한 접촉해석)

  • Park, Tae-Jo;Yoo, Jae-Chan;Jo, Hyeon-Dong
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.297-301
    • /
    • 2008
  • In many dynamic seals such as lip seal and compression packings, it is well known that wear occur at the surface of heat treated steel shaft as results of the intervened wear particle. It is widely understood that the dominant wear mechanism related in sealing surfaces is abrasive wear. However, little analytical and experimental studies about this problems have been done until now. In this paper, a contact analysis is carried out using MARC to investigate the wear mechanism in contact seal applications considering elastomeric seal, a elastic perfect-plastic micro-spherical particle and steel surface. Deformed seal shapes, contact and von-Mises stress distributions for various particle sizes and interference are showed. The maximum von-Mises stress within steel shaft was exceeded its yield strength and plastic deformation occurred at steel surface. Therefore, the sealing surface can be also worn by sub-surface fatigue due to wear particles together with well known abrasion. The numerical methods and models used in this paper can be applied in design of dynamic sealing systems, and further intensive studies are required.

A Study on Dynamic Valve Characteristics of Regulators in Hydraulic Winches According to Design Parameters (선박용 유압윈치용 레귤레이터의 설계 파라미터 변화에 따른 밸브 거동 특성 연구)

  • Jeong, Yoo Seong;Chung, Won Jee;Noh, Ki Tae;Lee, Jung Min;Choi, Jong Kap;Jeong, Young Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.214-222
    • /
    • 2017
  • Maritime deck machinery relies heavily on the importation of components produced by overseas companies. Our research defines design parameters for hydraulic winch regulators used in maritime deck machinery. Using Amesim, we were able to conduct 1D modeling, and utilizing CFS then enabled us to create 3D models. These models were analyzed in our research for changes in pressure on each port that resulted from the regulator's spring constant and changes in the primary tension-compression field. Our research then analyzed alterations in traits caused by changes in the length of overlap between the spool and sleeve. Last but not least, our research analyzed the trait alteration resulting from changing the interval between the spool and sleeve. We believe the results of our research can be used to design a hydraulic winch regulator used in maritime deck machinery that does not require importation.

Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model (유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석)

  • 이제원;왕세명;주재만;박승일;이성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF

The Effect of Intermittent Compressive Loading to Growth of Pre-osteoblast Cells (간헐적인 압축하중이 조골세포주 성장에 미치는 영향)

  • Choi, Sung-Kyu;Park, Jeong-Hun;Lee, Seung-Jae;Lee, In-Hwan;Kang, Sang-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.153-159
    • /
    • 2010
  • Recently, it has been reported that mechanical stimulation takes a role in improving cell growth. Also, became generally known that skeletal system as bone or cartilage tissues take influence of compression loading. In this study, we fabricated a custom-made bioreactor and analyzed that conditions of compressive loading would influence cell growth. To compare the effect of intermittent compressive loading on cell-encapsulated agarose scaffold, we cultured preosteoblast cell (MC3T3-E1 cells) statically and dynamically. And dynamic culture conditions were produced by changing parameters such as the iteration time and interval delay time. Also, cellencapsulated agarose scaffold were subjected to 10 % dynamic compressive strain at 1㎐ frequency for 7 days. After cell culture, cell proliferation was assessed with PI stain assay for fluorescence images and flow cytometry (FACS).

Failure Analysis and Countermeasures of SCM435 High-Tension Bolt of Three-Step Injection Mold

  • Yun, Seo-Hyun;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_1
    • /
    • pp.531-539
    • /
    • 2020
  • When injection mold is repeatedly used for mass production, fatigue phenomenon due to cyclic stress may occur. The surface and interior of structure might be damaged due to cyclic stress or strain. The objective of this study was to analyze failure of SCM435 high-tension bolts connecting upper and lower parts of a three-stage injection molding machine. These bolts have to undergo an accurate heat treatment to prevent the formation of chromium carbide and the action of dynamic stresses. Bolts were fractured by cyclic bending stress in the observation of ratchet marks and beach marks. Damaged specimen showed an acicular microstructure. Impurity was observed. Chromium carbide was observed near the crack origin. Both shape parameters of the Vickers hardness were similar. However, the scale parameter of the damaged specimen was about 20% smaller than that of the as-received specimen. Much degradation occurred in the damaged specimen. Bolts should undergo an accurate heat treatment to prevent the formation of chromium carbide. They must prevent the action of dynamic stresses. Bolts need accurate tightening and accuracy of heat treatment and screws need compression residual stress due to peening.