• 제목/요약/키워드: Dynamic Bayesian Network

검색결과 66건 처리시간 0.022초

PHHMM(Product Hierarchical Hidden Markov Model)을 이용한 축구 비디오 분석 (A Soccer Video Analysis Using Product Hierarchical Hidden Markov Model)

  • 김무성;강행봉
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.681-682
    • /
    • 2006
  • 일반적으로 축구 비디오 데이터는 멀티모달과 멀티레이어 속성을 지닌다. 이러한 데이터를 다루기 적합한 모델은 동적 베이지안 네트워크(Dynamic Bayesian Network: DBN) 형태의 위계적 은닉 마르코프 모델(Hierarchical Hidden Markov Model: HHMM)이다. 이러한 HHMM 중 다중속성의 특징들이 서로 상호작용하는 PHHMM(Product Hierarchical Hidden Markov Model)이 있다. 본 논문에서는 PHHMM 을 축구 경기의 Play/Break 이벤트 검색 및 분석에 적용하였고 바람직한 결과를 얻었다.

  • PDF

Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks

  • Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.252-261
    • /
    • 2014
  • A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.

순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델 (Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm)

  • 정현석;류종혁;정석권
    • 수산해양기술연구
    • /
    • 제60권1호
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

인공신경망을 활용한 동적 물성치 산정 연구 (Neural Network-Based Prediction of Dynamic Properties)

  • 민대홍;김영석;김세원;최현준;윤형구
    • 한국지반공학회논문집
    • /
    • 제39권12호
    • /
    • pp.37-46
    • /
    • 2023
  • 동적 물성치는 지반의 상세한 거동을 예측하기 위한 필수인자이나, 샘플 채취와 추가적인 실험이 동반되는 한계가 있다. 본 연구의 목적은 정적 지반 물성치를 기반으로 동적 지반 물성치를 예측하는 것으로 인공신경망을 활용하고자 하였다. 정적 물성치는 점착력, 내부마찰각, 함수비, 비중 그리고 일축압축강도로 선정하였으며 출력 값인 동적물성치는 압축파 속도와 전단파 속도로 결정하였다. 인공신경망 적용시 결과값의 신뢰성을 높이기 위해 Levenberg-Marquardt와 Bayesian regularization 방법을 적용하였으며, 각 최적화 방법에 따른 신뢰성을 비교하였다. 인공신경망 모델의 정확도는 결정계수로 나타냈으며, train과 test 과정 모두 0.9 이상의 값을 보여 해당 연구에서 구축한 인공신경망의 신뢰성이 높은 것으로 나타났다. 또한, 구축된 인공신경망 모델의 검증을 위해 새로운 입력 데이터에 대해서도 출력값의 신뢰성을 검증하였으며, 그 결과 높은 정확도를 보였다.

Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN

  • Meng, Xiangkun;Chen, Guoming;Zhu, Gaogeng;Zhu, Yuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.22-32
    • /
    • 2019
  • On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)-using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)-for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms.

서비스 로봇의 가려진 물체 인식을 위한 온톨로지 기반 동적 베이지안 네트워크 모델링 및 추론 (Dynamic Bayesian Network Modeling and Reasoning Based on Ontology for Occluded Object Recognition of Service Robot)

  • 송윤석;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권2호
    • /
    • pp.100-109
    • /
    • 2007
  • 서비스 로봇의 물체 인식은 배달, 심부름 같은 로봇이 수행하는 대부분의 서비스를 위해 매우 중요하다. 기존의 방법은 산업 환경에서 기하학적 모델에 기반 하여 물체를 인식하였으나, 환경 조건이 변화하고 로봇의 이동이 발생하는 실내 환경에서는 로봇의 위치에 따라 영상 속에서 물체가 가려져 있거나 작을 수 있어 인식이 잘되지 않는 상황이 발생한다. 이러한 불확실한 상황을 해결하기 위해 본 논문에서는 영상에서 인식된 물체들을 컨텍스트 정보로 사용하여 관심 있는 물체의 존재를 추론하기 위한 방법을 제안한다. 이를 위해 베이지안 네트워크와 온톨로지를 함께 사용하여 확률적 프레임 안에서 도메인 지식을 모델링하기 위한 방법과 추론 모델의 확장을 위해 동적으로 베이지안 네트워크를 생성하고 추론하는 방법을 제안한다. 실험을 통해서 이러한 방법의 성능을 검증하였고 확률적 모델 안에서 귀납적 추론이 갖는 장점을 확인할 수 있었다.

서베일런스에서 베이지안 분류기를 이용한 객체 검출 및 추적 (Object Detection and Tracking using Bayesian Classifier in Surveillance)

  • 강성관;최경호;정경용;이정현
    • 디지털융복합연구
    • /
    • 제10권6호
    • /
    • pp.297-302
    • /
    • 2012
  • 본 논문은 이미지 상황분석을 기반으로 하여 객체 검출 및 추적 방법을 제안한다. 제안하는 방법은 배경이 복잡한 형태이거나 배경이 동적으로 움직일 때에도 일관성 있는 결과를 얻을 수 있다. 입력 영상의 상황분석은 K-means와 RBF의 하이브리드 네트워크를 이용하여 수행되어진다. 제안된 객체 검출은 일정하지 않은 객체 이미지 때문에 생기는 영향을 감소시키기 위해 상황 기반 적응적 베이지안 네트워크를 이용한다. 본 논문에서는 학습 속도를 높이기 위해 2D Haar 웨이블릿 변형을 이용한 특징 벡터 생성기와 베이지안 판별식 방법을 이용하여 학습 시간이 적게 걸리며 학습 데이터의 변화에 일정한 성능을 갖는 방법론을 제안하였다. 제안하는 방법을 개발하여 실환경에 적용한 결과 검출하고자 하는 물체가 예측 영역을 넘나들거나 다른 불확실한 변화에도 안정적으로 반응함을 알 수 있었다. 실험 결과는 기존의 방법들에서 사용되었던 다양한 데이터 집합에 적용하였을 때 우수한 성능을 보여준다.

DP 선박 위치손실사고의 인적오류에 관한 연구 (A Study on Human Error of DP Vessels LOP Incidents)

  • 채종주
    • 해양환경안전학회지
    • /
    • 제21권5호
    • /
    • pp.515-523
    • /
    • 2015
  • 본 연구에서는 10년간(2001 2010) IMCA에 보고된 DP 선박 LOP(Loss of Position)사고 612건에서 인적오류에 의한 사고 103건을 확인하여 이를 HFACS로 분류하였다. 그리고 이를 베이지안 네트워크에 적용하여 인적오류의 조건부 확률을 확인해 보았다. 그 결과 103건의 인적오류관련 사고는 모두 불안전한 행동에 의해서 발생하였고 이들 중 기술 기반 오류가 70건(68.00 %)으로 가장 큰 인적오류 비율을 차지하였다. 기술 기반 오류 중에서는 부주의한 DP 선박 운용 60건(58.3%), 절차 미 준수 8건(7.8%)이었고, 의사결정 오류에 의한 잘못된 조종이 21건(20.8%)을 차지하였다. 이러한 HFACS 분류의 베이지안 네트워크 적용을 통해서는 불안전한 감독(68%)이 불안전한 행동의 가장 큰 잠재적 요인으로 작용하고 있다는 것을 확인 할 수 있었다. 결론적으로 HFACS와 연계한 베이지안 네트워크는 인적오류를 분석하는 데 유용한 도구임을 확인 할 수 있었고, 분석 결과를 바탕으로 DP 선박안전 운용을 위한 정책, 내부 관계, 훈련등과 같은 인적오류를 경감 및 제거하기 위한 권고 9가지를 제안하였다.

스마트폰과 Double-Stacked 파티클 필터를 이용한 실외 보행자 위치 추정 정확도 개선에 관한 연구 (A Study on Enhancing Outdoor Pedestrian Positioning Accuracy Using Smartphone and Double-Stacked Particle Filter)

  • 성광제
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.112-119
    • /
    • 2023
  • In urban environments, signals of Global Positioning System (GPS) can be blocked and reflected by tall buildings, large vehicles, and complex components of road network. Therefore, the performance of the positioning system using the GPS module in urban areas can be degraded due to the loss of GPS signals necessary for the position estimation. To deal with this issue, various localization schemes using inertial measurement unit (IMU) sensors, such as gyroscope and accelerometer, and Bayesian filters, such as Kalman filter (KF) and particle filter (PF), have been designed to enhance the performance of the GPS-based positioning system. Among Bayesian filters, the PF has been widely used for the target tracking and vehicle navigation, since it can provide superior performance in estimating the state of a dynamic system under nonlinear/non-Gaussian circumstance. This paper presents a positioning system that uses the double-stacked particle filter (DSPF) as well as the accelerometer, gyroscope, and GPS receiver on the smartphone to provide higher pedestrian positioning accuracy in urban environments. The DSPF employs a nonparametric technique (Parzen-window) to create the multimodal target distribution that approximates the posterior distribution. Experimental results show that the DSPF-based positioning system can provide the significant improvement of the pedestrian position estimation in urban environments.

  • PDF

사용자 컨텍스트 공유를 위한 상황인지 메신저 (A Context-aware Messenger for Sharing User Contextual Information)

  • 홍진혁;양성익;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권9호
    • /
    • pp.906-910
    • /
    • 2008
  • 모바일 환경이 보편화됨에 따라 사용자의 상황을 인식하고 관련된 각종 컨텍스트를 공유하는 기술에 대한 관심이 높아지고 있다. 컨텍스트 공유는 사용자의 의사소통을 보다 풍부하게 할 뿐만 아니라 사회적 관계를 원만하게 유지하도록 도와준다. 최근 각종 메신저나 모바일 어플리케이션에는 간단한 수준의 사용자 컨텍스트 공유가 적용되고 있으나 사용자 환경이 복잡해짐에 따라 더욱 다양한 컨텍스트의 인식과 공유가 요구된다. 본 논문에서는 다양한 센서 정보를 수집하여 사용자의 대표적 컨텍스트인 감정, 스트레스, 행동을 동적 확률 모델을 이용하여 인식하고 메신저에 연동하여 컨텍스트 정보를 공유하는 상황인지 메신저를 개발한다. 다양한 컨텍스트를 인식하기 위한 다중모델을 효과적으로 구성하고 아이콘 방식으로 컨텍스트를 표시한다. 개발한 시스템을 사용자 시나리오를 바탕으로 평가하여 유용성을 검증하였다.