• Title/Summary/Keyword: Duration of Sunshine

Search Result 194, Processing Time 0.026 seconds

A Study on the Priority Decision for Interconnection of PV System on Power Distribution System considering Customer Interruption Costs (정전비용 고려한 PV시스템의 배전계통 연계 우선순위 결정에 관한 연구)

  • Son, Chang-Nam;Han, Woon-Dong;Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.163-168
    • /
    • 2014
  • In this paper, when photovoltaic systems are connected to distribution system, most effective capacity and location of PV system are studied considering customer interruption costs of power distribution system. The reliability model of PV system considering the duration of sunshine, the model of time-varying load and Roy Billinton test system (bus2 model) are used. To simulate the effects of PV system, various cases are selected; (1) base case which is no connection of PV system to power distribution system when faults are occurred, (2) 3MW case which is 3[MW] connection of PV system (3) 4[MW] case, and (4) 20[MW] case which is 20[MW] connection of PV system to the bus of power distribution system. The capacity limit of connected PV system is settled to 14[MW] for all cases except case 4. The reliability and customer interruption costs for residential, general, industrial, and educational customer is evaluated.

Design of Generation Efficiency Fuzzy Prediction Model using Solar Power Element Data (태양광발전요소 데이터를 활용한 발전효율 퍼지 예측 모델 설계)

  • Cha, Wang-Cheol;Park, Joung-Ho;Cho, Uk-Rae;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1423-1427
    • /
    • 2014
  • Quantity of the solar power generation is heavily influenced by weather. In other words, due to difference in insolation, different quantity may be generated. However, it does not mean all areas with identical insolation produces same quantity because of various environmental aspects. Additionally, geographic factors such as altitude, height of plant may have an impact on the quantity. Hence, through this research, we designed a system to predict efficiency of the solar power generation system by applying insolation, weather factor such as duration of sunshine, cloudiness parameter and location. By applying insolation, weather data that are collected from various places, we established a system that fits with our nation. Apart from, we produced a geographic model equation through utilizing generated data installed nationwide. To design a prediction model that integrates two factors, we apply fuzzy algorithm, and validate the performance of system by establishing simulation system.

Proposal of Modified Correlation to Calculate the Horizontal Global Solar Irradiance for non-Measuring Cloud-cover Regions (운량 비측정 지역을 위한 수평면전일사량 예측 상관식의 수정모델 제안)

  • Cho, Min-Cheol;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.29-33
    • /
    • 2016
  • Recently, the authors of this paper proposed newly the correlation model to calculate the horizontal global solar radiation in Korea based the Zhang-Huang (ZH) model proposed in 2002 for China. Previous study was pronounced the correlation with a new term of the duration of sunshine proved as being closely related with the hourly solar radiation in Korea into ZH model. And then another modified correlation for the regions without measuring cloud cover was proposed and evaluated the accuracy and validity for those regions. So, this study was performed to propose modified correlation to calculate the horizontal global solar irradiance of non-measuring cloud-cover regions. Finally, this study proposed the new correlation that could well predict hourly and daily total solar radiation for all regions, various seasons, and various weather conditions including overcast and clear, with higher accuracy and lower error than other models proposed ever before in Korea for non-measuring cloud-cover regions.

A Study on the Optimization of Power Consumption Pattern using Building Smart Microgrid Test-Bed (Building Smart Microgrid Test-Bed를 이용한 전력사용량 패턴 최적화방안 연구)

  • Lee, Sang-Woo;Kang, Jin-Kyu;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • The microgrid system is the combination of photovoltaic(PV) array, load, and battery energy storage system. The control strategies were defined as multi-modes of operation, including rest operation without use of battery, power charging, and power discharging, which enables grid connected mode or islanded mode. Photovoltaic power is a problem of the uniformity of power quality because the power generated from solar light is very sensitive to variation of insolation and duration of sunshine. As a solution to the above problem, energy storage system(ESS) is considered generally. There fore, in this study, we did basic research activities about optimization method of the amount of energy used, using a smart microgrid test-bed constructed in building. First, we analyzed the daily, monthly and period energy pattern amount of power energy used, and analyzed PV power generation level which is built on the roof. Utilizing building energy pattern analysis data, we was studied an efficient method of employing the ESS about building power consumption pattern and PV generation.

The Impact of Climate Factors, Disaster, and Social Community in Rural Development

  • FARADIBA, Faradiba;ZET, Lodewik
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.707-717
    • /
    • 2020
  • Global warming affects climate change and has an overall impact on all aspects of life. On the other hand, community behavior and disaster aspects also have an important role in people's lives. This will also have an impact on regional development. This study aims to find the effect of climate, disaster, and social community on rural development. This study uses data on the potential of rural development from PODES 2014, and 2018 data collection on climate conditions and regional status is sourced from relevant ministries. This research uses Ordinary Least Square (OLS) Regression Analysis method, then continued with CHAID analysis to find the segmentation of the role of climate, disaster, and social factors on rural development. The results of this study found that all research regressor variables significantly influence the Rural Development Index (IPD2018), with an R-squared value of 32.9 percent. Efforts need to be taken in order to implement policies that are targeted, effective, and efficient. The results of this study can be a reference for the government in determining policies by focusing on rural development that have high duration of sunshine, cultivating natural disaster warnings, especially in areas prone to natural disasters, and need to focus on underdeveloped areas.

Effects of Some Meteorological Factors on Number of Cone Formation in Pinus koraiensis (잣나무착과량(着果量)에 미치는 몇 개 기상인자(氣象因子)의 영향(影響))

  • Chon, Sang-Keun;Kim, Il-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.57 no.1
    • /
    • pp.45-51
    • /
    • 1982
  • The environmental influence on cone crop of Pinus koraiensis has been studied by means of correlation and regression analysis of number of 1-year-old cone and meteorological data. A positive effect on cone crop is brought about by low air temperature during the year of flower bud differentiation and much sunshine duration for the year and the winter before flower bud differentiation. The weather of June before flower bud differentiation is very important for cone production.

  • PDF

Characteristics on variation of meterological variables during the partial solar eclipse event of 21 May 2012 in Busan (2012년 5월 21일 부분일식 발생 시 부산지역 기상요소의 변화 특성)

  • Jeon, Byung-Il;Kim, Il-Gon
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.885-893
    • /
    • 2013
  • The purpose of this study was to analyze the effects of partial solar eclipse on 21 May 2012 in Korea on meteorological variables in Busan. 0800 LST(Local Standard Time) solar radiation was similar or lower than 0700 LST solar radiation, and sunshine duration decreased by 0.2~0.5 hours in Busan and great cities under the influence of the partial solar eclipse. Temperature drop due to the partial solar eclipse was $0.2{\sim}2.0^{\circ}C$, time taken to arrive at maximum temperature after onset of eclipse was 8~62 minutes, and time taken to arrive at minimum temperature after maximum eclipse was -9~17 minutes in Busan. Change of wind speed was negligible as partial solar eclipse occurred in the morning. Soil temperature of 5 cm was minute as well, the increase of soil temperature due to sunset was delayed by more than 1 hour.

Modeling for Prediction of the Turnip Mosaic Virus (TuMV) Progress of Chinese Cabbage (배추 순무모자이크바이러스(TuMV)병 진전도 예측모형식 작성)

  • 안재훈;함영일
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 1998
  • To develop a model for prediction of turnip mosaic virus(TuMV) disease progress of Chinese cabbage based on weather information and number of TuMV vector aphids trapped in Taegwallyeong alpine area, data were statistically processed together. As the variables influenced on TuMV disease progress, cumulative portion(CPT) above 13$^{\circ}C$ in daily average temperature was the most significant, and solar radiation, duration of sunshine, vector aphids and cumulative temperature above $0^{\circ}C$ were significant. When logistic model and Gompertz model were compared by detemining goodness of fit for TuMV disease progress using CPT as independent variable, regression coefficient was higher in the logistic model than in the Gompertz model. Epidemic parameters, apparent infection rate and initial value of logistic model, were estimated by examining the relationship between disease proportion linearized by logit transformation equation, In(Y/Yf-Y) and CPT. Models able to describe the progression of TuMV disease were formulated in Y=100/(1+128.4 exp(-0.013.CPT.(-1(1/(1+66.7.exp(-0.11.day). Calculated disease progress from the model was in good agreement with investigated actual disease progress showing high significance of the coefficient of determination with 0.710.

  • PDF

A Basic Study to Predict Solar Insolation using Meteorological Observation Data in Korea (국내 기상 측정결과를 이용한 일사량 예측 방법 기초 연구)

  • Hwangbo, Seong;Kim, Hayang;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • To well design the solar energy system using solar energy, the correlation to calculate solar irradiation is basically needed. So, this study was performed to reveal the relationships between the solar irradiation and four meteorological observation data(dry bulb temperature, relative humidity, sunshine duration, and cloud cover) which are different from previous other researches. And then, we finally proposed the first order non-linear correlation from the measured solar irradiation using four meteorological observation data with MINITAB. To show the deviation of the solar irradiation between measured and calculated, this study compared using the daily total solar irradiance and the maximum peak value. From those results, the calculation error was estimated about maximum 25.4% for the daily total solar irradiance. The error of the solar irradiation between measured and calculated was made from the curve fitting error. So, solar irradiation prediction correlation with higher accuracy can be obtained using 2nd or higher order terms with four meteorological observation data.

Evaluating Explanatory Power of Solar Intensity as Determining Factor of Housing Density in Intermontane Basin (산간분지에서 주택밀도의 결정인자로서 태양광도의 영향력 평가)

  • Um, Jung-Sup
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.6
    • /
    • pp.689-706
    • /
    • 2009
  • It is usual to prioritize the spatial variables that influence housing location by a few specialist's experienced knowledge or intuition. Multiple regression techniques were used to evaluate the spatially prioritized relationships between housing density and seasonal solar intensity parameters for a total of 134 house locations. Solar radiation and duration of sunshine on winter solstice was the most important predictor of house density located in intermontane basin. In contrast to the typical theory, elevation, slope and accessibility to road were not a dominant determining factor upon the dependent variable of house density. A clear verification has been made for the hidden assumptions for the arrangement of typical Korean housing in intermontane basin that its approach is found to be more appropriate in avoiding shadow conditions, rather than exploring the ideal landform location.

  • PDF