• Title/Summary/Keyword: Durability Improvement

Search Result 599, Processing Time 0.034 seconds

Durability Study of Blower Motor Noise (블로워 모터 소음의 내구성 고찰)

  • Lee, Myung-Han;Ih, Kang-Duck;Hwang, Dong-Woo;Lee, Hyeon-Heui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1115-1119
    • /
    • 2007
  • As in many of the vehicle NVH issues, blower motor noise has been improved over the years through intensive R&D and production process improvement. Durability of motors, however, still has room for improvement according to customer surveys such as VDS. To investigate the noise issues of blower motors in view of durability, current production motors along with major competitor motors are tested. The noise after accelerated durability test shows that production motors are competitive in noise level with similar noise performance compared to initial measurement. The test result also provided guidelines to the durability development process.

  • PDF

An Experimental Study on the Shrinkage Properties and Resistance for Chloride Attack of Seaside Construction Concrete added Durability Improvement Agent (내구성개선제가 첨가된 해안 구조물용 콘크리트의 수축특성과 내염해성에 관한 실험적 연구)

  • Kim, Do-Su;Kim, Woo-Jae;Kim, Hyun-Bae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.151-154
    • /
    • 2006
  • It is generally referred that life cycle of concrete construction is depend on whether durability of concrete is obtained or not. Nevertheless, it has not been yet applied that new material and technology to improve durability of concrete such as seaside concrete construction. In this study, chemical agent which is capable of improving durability added to 2 types seaside concrete mixs and evaluated engineering properties such as slump, air content, setting time and compressive strength. Besides shrinkage crack with an restraint condition and chloride ion penetration tests were executed to measure resistance of concrete added chemical agent and then compared non-added. It was appeared that engineering properties and resistant for chlorides was possible to improved. But resistant for shrinkage crack was not noticeable improvement than non-added. Therefore it is necessary that more consideration and following study to improve durability aspect to shrinkage crack and chlorides resistant.

  • PDF

A Study on the Cause and Improvement Plans of Construction Monitoring Sensors Decline in Durability (건설 계측센서의 내구연한 저하원인 및 개선방안 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.28-38
    • /
    • 2019
  • Purpose: The purpose of this study is to contribute to improvement of measurement management level of construction structure and technology development of monitoring sensor by presenting the detailed causes and improvement plans of construction monitoring sensor's decline in durability. Method: The causes and improvement plans of the durability degradation of the construction monitoring sensor were divided into the construction field and the electric, electronic field. The detailed status was reviewed. Results: In the field of construction, approval and inspection, inspection and testing, verification and calibration, and minimization of loss and damage ratio were reviewed. In the field of electric and electronics, sensor package and sealing, disconnection of stress concentration area, damage caused by lightning and corrosion were reviewed. Conclusion: It is expected that the durability of monitoring sensors applied to the construction site will become longer than the present status based on the study that analyzed causes and improvement plans of construction monitoring sensor's decline in durability in the field of construction and electric, electronic devices.

Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements (스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구)

  • Yoo, Tae Seok;Ryu, SungWoo;Kim, Jin Cheol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.

Durability Characteristics of High-Early-Strength Concrete (조기강도 콘크리트의 내구특성)

  • 원종필;김현호;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.991-996
    • /
    • 2001
  • The long-term durability characteristics of high-early-strength concrete were assessed. The effect of long-term durability characteristics of high-early-strength concrete were investigated. In experiment, two different types of fiber were adopted for improvement of durability. High-early-strength fiber reinforced concretes using regulated-set cements are compared with high-early-strength concrete without fiber. The durability performance of the laboratory-cured high-early-strength concrete specimens was determined by conducting an accelerated chloride permeability, abrasion resistance, freeze-thaw, surface deicer salt scaling and wet-dry repetition test. The results indicated that incorporation of fibers enhance durability performance.

  • PDF

A Study on the Watertightness Improvement of Cementitious Material for Durability Improvement of Concrete (콘크리트 내구성 향상을 위한 시멘트 재료의 수밀성 개선에 관한 연구)

  • Kang, Hyun-Ju;Song, Myong-Shin;Jeong, Eui-Dam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.17-25
    • /
    • 2010
  • We studied on the watertightness improvement of cementitious material for durability enhancement of concrete. For improvement of watertightness of OPC and OPC with fly ash, we used various materials with watertightness properties to OPC and OPC with fly ash. The performance of watertightness improvement of cementitious materials closely related to formation of CSH by pozzolanic reaction and to reducing of size of contact angle in cement pore by using organic fatty acid. And volume of CSH formation at early hydration have an influence of watertightness improvement and reduction of long-term water absorption rate. In using of fly ash, improvement of workability by using the spherical fly ash caused to densify on the structures of cement material and CSH formation by pozzolanic reaction and cement using fly ash also caused watertightness improvement of cementitious materials. For improvement of concrete durability by watertightness, cementitious materials need using watertightness materials and at using fly ash, also it have to the effect of improvement of watertightness of cementitious materials by pozzolanic reaction.

An Evaluation on Concrete incorporating blame blast furnace slag powder adding Durability Improvement Agent (고로슬래그 미분말에 내구성향상 혼화제를 첨가한 콘크리트의 기초물성에 관한 실험적 연구)

  • Lee, Jong-Rok;Lim, Sang-Jun;Song, In-Myung;Yun, Jae-Hwan;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.147-150
    • /
    • 2007
  • As recent buildings often use low-quality concrete materials, are constructed defectively, and are put in extreme environmental conditions, many of them show the shortening of life resulting from the corrosion of reinforcing rods by salt damage, carbonization, freezing and thawing, cracking. This in turn raises the cost of repair and maintenance, so it is required to extend the life of structures through enhancing the durability of concrete. In response to the demand, researches on high-durability concrete are being made actively focused on the maximum water-cement ratio, the maximum unit quantity, the minimum cover thickness, the addition of mineral admixtures, etc. With this background, the present study examined the basic physical properties of concrete containing admixtures for enhancing the durability of concrete.

  • PDF

Strength and durability characteristics of biopolymer-treated desert sand

  • Qureshi, Mohsin U.;Chang, Ilhan;Al-Sadarani, Khaloud
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.785-801
    • /
    • 2017
  • Biopolymer treatment of geomaterials to develop sustainable geotechnical systems is an important step towards the reduction of global warming. The cutting edge technology of biopolymer treatment is not only environment friendly but also has widespread application. This paper presents the strength and slake durability characteristics of biopolymer-treated sand sampled from Al-Sharqia Desert in Oman. The specimens were prepared by mixing sand at various proportions by weight of xanthan gum biopolymer. To make a comparison with conventional methods of ground improvement, cement treated sand specimens were also prepared. To demonstrate the effects of wetting and drying, standard slake durability tests were also conducted on the specimens. According to the results of strength tests, xanthan gum treatment increased the unconfined strength of sand, similar to the strengthening effect of mixing cement in sand. The slake durability test results indicated that the resistance of biopolymer-treated sand to disintegration upon interaction with water is stronger than that of cement treated sand. The percentage of xanthan gum to treat sand is proposed as 2-3% for optimal performance in terms of strength and durability. SEM analysis of biopolymer-treated sand specimens also confirms that the sand particles are linked through the biopolymer, which has increased shear resistance and durability. Results of this study imply xanthan gum biopolymer treatment as an eco-friendly technique to improve the mechanical properties of desert sand. However, the strengthening effect due to the biopolymer treatment of sand can be weakened upon interaction with water.

A Study on Durability Life Improvement of Blower for Military Armored Vehicle and Self-propelled Artillery (군용장갑차 및 자주포용 송풍기의 내구수명 향상에 대한 연구)

  • Park, Young Min;Kim, Byung Uk;Kim, Sung Hoon;Noh, Sang Wan
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.453-465
    • /
    • 2019
  • Purpose: A main purpose is to increase the operational rate and reduce operating maintenance costs by Improving the durability of Blower of Military Armored Vehicle and Self-propelled Artillery. As a result, it is expected to improve the service quality of customers. Methods: After analyzing the cause of the stop of the blower, the improvement plans were established and the effectiveness of each improvement plans were verified by testing. Results: Mechanical, electrical and environmental factors affecting brush wear were reviewed, but it was difficult to specify the cause, which necessitated a review of the application of the BLDC motor. Conclusion: After applying the BLDC motor to the blower, tests proved that the existing blower can be replaced. It is expected that this study will help improve the durability life of similar equipment that is applied with Brushed DC motors as well as blowers.

A Study on Soil Improvement Effects under Poor Ground Conditions (열악한 지반조건에서 고질공법의 지반보강효과 증대에 관한 연구)

  • 천병식;최기성
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.115-132
    • /
    • 1996
  • Several soil improvement methods are applied to stabilize soft ground. But, their improvement effects are known to be reduced in view of strength and durability under poor conditions such as marine clay and the ground with the flow of groundwater. The soil improvement method is generally classified as mixing(high pressure) type and injection type, and in this study, for successflll'applications of gelling methods, first in case that mixing method with cement is applied to marine clay, the causes of strength inferiority of treated soil are analyzed, and the effectiveness of improvement is studied, second in case that injection method with water-glass chemical grouts is applied to the ground with the flow of groundwater, soil improvement effects and durability of grouted soil are studied.

  • PDF