• 제목/요약/키워드: Duct to Nozzle Area Ratio

검색결과 9건 처리시간 0.02초

Mixer-Ejector 노즐 유동장에 관한 수치해석 (Computational Analysis of the Flowfield of a Mixer-Ejector Nozzle)

  • Park, Yun-Ho
    • 한국추진공학회지
    • /
    • 제6권1호
    • /
    • pp.71-82
    • /
    • 2002
  • 본 연구에서는 2차원의 압축성 Navier-Stokes 코드를 개발하여 mixer-ejector 노즐의 유동장 해석을 다양한 덕트와 노즐 면적비 및 노즐 압력비에 대하여 계산을 수행하였다. 덕트와 노즐 면적비 계산에서는 먼저 효율적인 2차 유동의 유입을 위한 최적의 면적비가 있음을 볼 수 있었다. 높은 면적비에서는 입구 자유유동의 적절한 혼합없이 mixing duct를 그대로 통과하는 것을 볼 수 있었고, 낮은 면적비에서는 제트의 경계가 유입 유동에 장애물로 작용하는 것을 볼 수 있었다. 노즐 압력비의 계산에 있어서는 shroud 벽면과 shock cell structure 간에 상호작용이 작다면 유입유량은 압력비에 따라 증가하는 것을 볼 수 있었다.

자동차 Defrost 노즐 유동의 설계인자에 대한 수치적 연구 (Numerical Study of the Design Factors for Flow Analysis of the Automotive Defrost Nozzle)

  • 박원규;배인호
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.217-224
    • /
    • 2003
  • The frost and mist in the windshield disturb the sight of driver and passengers especially in winter. This possibly leads to safety problems. In order to export automobiles to the countries of North America, the safety regulation requires the frost of selected area should be completely melted in 30 minutes. The defrost pattern and time for melting of frost are fully dependent on the flow and temperature field near the windshield. Furthermore, the flow and temperature field near the windshield are dependent on the air discharged from defrost nozzle. The present work has been done for understanding the flow features of the discharged air and internal flow within the nozzle duct. The three dimensional Navier-Stokes code was used for performing the generic A/C duct flow analysis. The present results were nearly coincided with experimental data. To perform the parametric study of the effectiveness of the number of guide vanes, the discharge angle and the location of nozzle were changed. The ratio of volume flow rate through defrost nozzle and side exit were compared to investigate the influence of parameters on the effectiveness of defrost nozzle. The velocity profiles and flow patterns of the defrost nozzle duct were also analyzed.

축대칭 환형 이젝터 제트의 내부 유동과 추력특성 (INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET)

  • 박근홍;권세진
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.46-52
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present study was 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 33 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

축대칭 환형 이젝터 제트의 내부 유동과 추력특성 (INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET)

  • 박근홍;권세진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.166-170
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present studywas 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 34 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

  • PDF

전달함수를 이용한 2단 덕트 시스템에서의 연소불안정 해석 (Analysis of Combustion Instabilities in a 2-stage Duct System using Transfer Functions)

  • 김선영;김대식
    • 한국분무공학회지
    • /
    • 제26권4호
    • /
    • pp.182-188
    • /
    • 2021
  • In this paper, using a transfer function-based analytical model, major factors influencing the acoustics and combustion instability in a two-stage duct system composed of a nozzle and a combustor were derived and their quantitative effects were evaluated. From the acoustic analysis, it was confirmed that the change in reflection coefficient and mean flow could have a great influence on the instability growth rate, and the area ratio and speed of sound ratio between the nozzle and the combustor are also key parameters to determine combustion instability as well as flame transfer functions.

축대칭 환형 분사식 이젝터 제트 유동 특성의 수치적 연구 (A NUMERICAL STUDIES ON THE FLOW PROPERTIES OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JETS)

  • 박근홍;권세진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.185-188
    • /
    • 2006
  • An investigation of the ejector-jets focusing on its flow properties was carried out by varying the geometric parameters. The area ratio of the primary nozzle, AR that was tested in the present measurement was 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet, L/D had values of 3.41, 6.82, and 10.23. For the frame work of flow characteristics, the wall pressures distribution of ejector-jet was investigated by experiment for basic study of ejector-jet performance. In result, terminal shock location and existence of series of oblique shocks are recognized. In this study, CFD analysis was conducted at the same time. And as a result of comparison experiment data with CFD analysis, the physical phenomena of ejector-jets were estimated.

  • PDF

수직구조물 후방의 와류현상이 구조물에 설치된 벤투리관의 유체가속 효과에 미치는 영향에 관한 해석 연구 (Effect of Rear-Vortex of a Convergent-Divergent Duct on the Flow Acceleration Installed in a Vertical Structure)

  • 정광섭;김철호;조현성
    • 설비공학논문집
    • /
    • 제25권2호
    • /
    • pp.94-100
    • /
    • 2013
  • A convergent-divergent nozzle or venturi nozzle has been used to accelerate the wind speed at its throat. The wind speed at the throat is inversely proportional to its area according to the continuity equation. In this numerical study, an airflow phenomena in the venturi system placed at a vertical structure was investigated to understand the vortex effect occurred at the rear-side of the vertical structure on the air speed increment at the throat of the venturi system. For this study, a venturi system sized by $20(m){\times}20(m){\times}6(m)$ was modelled and the area ratio(AR) of the model venturi was 2.86. To see the vortex effect on the air flow acceleration in the venturi throat, two different boundary conditions was defined From the study, it was found that the pressure coefficient(CP) of the venturi system with the vortex formed at the exit of the venturi was about 2.5times of the CP of the venturi system without the vortex effect. The velocity increment rate of the venturi system with the vortex was 61% but 9.5% only at the venturi system without the vortex. Conclusively, it can be said that the venturi system installed in a vertical structure has very positive effect on the flow acceleration at its throat due to the vortex formed at the rear-side of the vertical structure.

2차목을 가지는 초음속 이젝터 유동에 관한 수치계산 (Computations of the Supersonic Ejector Flows with the Second Throat)

  • 최보규;이영기;김희동;김덕줄
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1128-1138
    • /
    • 2000
  • Pumping action in ejector systems is generally achieved through the mixing of a high-velocity and high-energy stream with a lower-velocity and lower-energy stream within a duct. The design and performance evaluation of the ejector systems has developed as a combination of scale-model experiments, empiricism and theoretical analyses applicable only to very simplified configurations, because of the generic complexity of the flow phenomena. In order to predict the detailed performance characteristics of such systems, the flow phenomena throughout the operating regimes of the ejector system should be fully understood. This paper presents the computational results for the two-dimensional supersonic ejector system with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the diffuser exit. For a wide range of the operating pressure ratio the flow field inside the ejector system is investigated in detail. The results show that the supersonic ejector systems have an optimal throat area for the operating pressure ratio to be minimized.

수분사 펌프의 유동 및 성능 해석 (Numerical Analysis of Flow Field and Performance of Water Jet Pump)

  • 조장근;박원규
    • 한국유체기계학회 논문집
    • /
    • 제2권2호
    • /
    • pp.64-73
    • /
    • 1999
  • The three-dimensional numerical study of a water jet pump was carried out to investigate the relationship between performance and the geometric variables of nozzle space, area ratio, and throat length. Because of the complex geometry, the multiblock technique was adopted for numerical analysis and a special treatment for transferring data from each of the block interfaces was implemented in order to maintain the conserved properties. To validate the present code, flow passing through a square duct with a 90-deg bend was computed, our results show good accordance with other experimental and computational results. The numerical simulation was done with the flow of the water jet pump having a 180-deg bend in order to calculate the performance at different operating conditions. The performance of the water jet pump can be improved by study of parameters which clarify the relations between the geometric variables and the flow characteristics of vortex strength and location.

  • PDF