• 제목/요약/키워드: Duct design

검색결과 350건 처리시간 0.03초

양흡입 원심블로어 성능향상을 위한 입구 유동 최적화 연구 (Evaluation of Inflow Uniformity on the Performance of Double-Inlet Centrifugal Blower Using Optimal Design Method)

  • 이종성;장춘만;전현준
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.326-333
    • /
    • 2013
  • This paper presents the performance enhancement of a double-inlet centrifugal blower by the shape optimization of an inlet duct. Two design variables, a length of anti circulation vane and an angles of inlet guide, are introduced to improve the inlet flow uniformity leading to the blower performance. Three-dimensional Navier-Stokes equations are used to analyze the blower performance and the internal flow of the blower. From the shape optimization of the inlet duct of the double-inlet centrifugal blower, the optimal positions of each design variable are determined. Throughout the analysis of sensitivity, it is found that the angle of the inlet guide is more effective than the length of the anti-circulation vane to increase flow uniformity at the outlet of the duct. Efficiency and pressure for the optimal inlet duct shape are successfully increased up to 3.55% and 3.2% compared to those of reference blower at the design flow condition, respectively. Detailed flow field inside the blower is also analyzed and compared.

에너지 절약을 위한 Wake Duct 특성 연구 (A Study on the Wake Duct For Energy Saving)

  • 김은찬;강국진
    • 한국기계연구소 소보
    • /
    • 통권17호
    • /
    • pp.177-187
    • /
    • 1987
  • This report describes the study result of the hydrodynamics characteristics for the wake duct. Two wake ducts for the DWT 25,000 Product Carrier were designed and manufactured. The resistance and propulsion performance of the model with them was evaluated by model tests. The object of the present research for the wake duct is to establish the foundation of the design technique and the performance prediction ability of the one, and furthermore, to prepare the base of the development of new type energy saving device

  • PDF

안내덕트 내부 난류유동구조에 따른 열전달 특성변화 수치해석 (Numerical Study on Heat Transfer Characteristics of Turbulent Flow in Transition Duct)

  • 유근종;최훈기;최기림
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.923-932
    • /
    • 2011
  • 본 연구에서는 복합화력발전소 가스터빈 출구가스 안내덕트 내부의 가스유동장이 배열회수보일러 전열기구에 미치는 영향을 CFD기법을 이용하여 분석하였다. 안내덕트 내부 난류흐름의 경우, 유속의 편차가 크고 선회 효과 및 상승류 현상이 심한 특징을 가지고 있음으로 이와 같은 유동의 수치해석을 위해 2개 방정식 난류점성 모델 중 RNG k-${\epsilon}$ 모델을 사용하였으며 유동장의 영향을 가장 많이 받는 배열 회수보일러 최종과열기관의 열전달특성변화를 파악하기 위하여 NTU 방식을 이용한 수치해석결과와, 산업계에서 적용하는 설계기법에 의한 결과를 비교하였다.

취출구를 가진 덕트의 공기분배장치 설계 (Design Of Air-Distribution System in a Duct)

  • 강형선;조병기;고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.954-960
    • /
    • 2007
  • The purpose of this paper is to obtain design method of air-distribution system. Air-distribution system is composed of blower, duct, diffusers and measuring equipment. The air-flow rate from each diffuser is not equal. The air-flow rate is calculated with the combined equations which are Bernoulli's equation, continuity equation and minor loss equations. Inlet condition and outlet condition are adapted in each duct system. Then square difference between function of maximum air-flow rate and minimum air-flow rate is used as an object function. Area of diffuser and velocity are established as constraints. To minimize the object function, the optimization method is used. After optimization the design variables are selected under satisfaction of constraints. The air-distribution system is calculated again with the result of optimized design variable. It is shown that the air-distribution system has the equal air-flow rate from diffusers.

A PID Control of Supply Duct Outlet Air Temperature in Personal Environment Module

  • Park, Young-Chil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권2호
    • /
    • pp.82-90
    • /
    • 2003
  • The work presented here is a design and an implementation of PID control system to regulate a supply duct outlet air temperature in PEM (Personal Environment Module). In PEM, the air is heated to the required temperature while it flows through the supply duct without any mixing chamber. This makes the control of air temperature in PEM difficult. A simulation is done first to understand the relationship between a temperature distribution in working area, flow rate and the outlet air temperature of PEM. Then a linear dynamic model of heating process in PEM is derived. P, PD and PID type control systems, to provide the rapid response without overshoot and saturation in heater command voltage, are designed using a linear model obtained. Experimentally obtained data shows that the control system satisfies the design criteria and works properly in controlling the supply duct outlet air temperature.

Buckling of insulated irregular transition flue gas ducts under axial loading

  • Ramadan, H.M.
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.449-458
    • /
    • 2012
  • Finite element buckling analysis of insulated transition flue ducts is carried out to determine the critical buckling load multipliers when subjected to axial compression for design process. Through this investigation, the results of numerical computations to examine the buckling strength for different possible duct shapes (cylinder, and circular-to-square) are presented. The load multipliers are determined through detailed buckling analysis taking into account the effects of geometrical construction and duct plate thickness which have great influence on the buckling load. Enhancement in the buckling capacity of such ducts by the addition of horizontal and vertical stiffeners is also investigated. Several models with varying dimensions and plate thicknesses are examined to obtain the linear buckling capacities against duct dimensions. The percentage improvement in the buckling capacity due to the addition of vertical stiffeners and horizontal Stiffeners is shown to be as high as three times for some cases. The study suggests that the best location of the horizontal stiffener is at 0.25 of duct depth from the bottom to achieve the maximum buckling capacity. A design equation estimating the buckling strength of geometrically perfect cylindrical-to-square shell is developed by using regression analysis accurately with approximately 4% errors.

Comparative Study between Results of Theoretical Calculation and Model Test for Performance Confirmation of "Crown Duct"

  • Lee, Kwi-Joo;An, Jung-Sun;Kwak, Han-Joung
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Chosun University, in cooperation with SPP shipyard, has developed an energy saving device based on a new concept: "Crown Duct." Crown Duct is composed of a semi-duct with short struts inside and outside the duct. Theoretical calculations for two different designs were carried out using the CFD code "Ship Flow." The design selected from these two different forms by the CFD code analysis was tested in a towing tank at SSPA. The results showed about 4% efficiency gain under a full-load condition and about 7% gain under a ballast condition in the towing tank test.

김치 냉장고용 홴 및 덕트 시스템 성능 개선 (Performance Improvement of Fan and Duct System for Kimchi Refrigerator)

  • 김준형;최영석;윤준용;박성관;현석호
    • 한국유체기계학회 논문집
    • /
    • 제14권4호
    • /
    • pp.45-51
    • /
    • 2011
  • The kimchi refrigerator is the electronic home appliance which is used for the maturing and a custody of the kimchi. In this paper, performance improvement of fan and duct system for kimchi refrigerator has been studied by using a commercial CFD code. In order to achieve a improved fan performance, three-dimensional computational fluid dynamics and the Design of Experiments method have been applied. Additionally, to know the optimized duct inlet shape with the optimized fan, the overall performances were calculated with various duct inlet shapes. The final fan and duct system for kimchi refrigerator showed improved performance in efficiency and total head compared with the existing model.

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.