• Title/Summary/Keyword: Dual-Polarized Antenna

Search Result 78, Processing Time 0.023 seconds

Design of Dual-Polarization Antenna with High Cross-Polarization Discrimination (높은 교차편파 분리도를 가지는 이중편파 안테나 설계)

  • Lee, Sang-Ho;Oh, Taeck-Keun;Ha, Jung-Je;Lee, Yong-Shik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • In a small cell base station used in densely populated areas, a dual polarized multiple antenna(MIMO) is mainly used to increase the cell capacity. This paper demonstrates a dual-polarization antenna with high cross-polarization discrimination(XPD) that can improve the capacity of a small cell using a dual polarization multiple antenna (MIMO). By using the symmetric structure and differential feeding, high XPD in all directions is achieved. In addition, a very similar radiation pattern is observed between each polarization. Because of high XPD and similar radiation pattern in all directions, proposed antenna is well adopted for small-cell multiple-input multiple-output(MIMO) system. Experimental results shows that the proposed antenna has a bandwidth of 180 MHz (2.51~2.7 GHz), a maximum gain of 4.5 dBi (3.5~4.5 dBi), and a half-power beam width of 85 degrees. In addition, average XPD of 26.4 dB in all directions, more than 13.8 dB increase than previous dual-polarization antennas which use single emitter by using different feeding or selectively use polarization through switching.

Design of Microstrip Patch Antenna on UHF Band using Multiple Meander for Metal Attached (금속 부착용 멀티 미앤더형 UHF 대역 마이크로스트립 패치 안테나 설계)

  • Park, Chan-Hong;Choi, Yong-Seok;Koo, Dong-Jin;Jang, Sung-Won;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.307-311
    • /
    • 2012
  • In this paper, a novel particle swarm optimization method based on IE3D is used to design a mobile communication Microstrip Patch Antenna. The aim of the thesis is to Design and fabricate an inset fed rectangular Microstrip Antenna and study the effect of antenna dimensions Length (L), Width (W) and substrate parameters relative Dielectric constant (${\varepsilon}r$), substrate thickness on Radiation parameters of Band width. When the antenna was designed, a dual-band, dual-polarized antenna was used to secure the bandwidth and improve performance, and a coaxial probe feeding method so that the phased array of antenna is easy.

  • PDF

A Study on Design of Microstrip Patch Antenna for Mobile Communication Systems using IE3D (IE3D를 이용한 단일 급전 이동통신용 마이크로스트립 패치 안테나 설계에 관한 연구)

  • Park, Jong-Dae;Park, Byeong-Ho;Shim, Woo-Seop;Kim, Myeong-Dong;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.316-319
    • /
    • 2012
  • In this paper, a novel particle swarm optimization method based on IE3D is used to design a mobile communication Microstrip Patch Antenna. The aim of the thesis is to Design and fabricate an inset fed rectangular Microstrip Antenna and study the effect of antenna dimensions Length (L), Width (W) and substrate parameters relative Dielectric constant (${\varepsilon}r$), substrate thickness on Radiation parameters of Band width. When the antenna was designed, a dual-band, dual-polarized antenna was used to secure the bandwidth and improve performance, and a coaxial probe feeding method so that the phased array of antenna is easy.

  • PDF

A Study on 8 × 4 Dual-Polarized Array Antenna for X-Band Using LTCC-Based ME Dipole Antenna Structure (LTCC 기반 ME Dipole 안테나 구조를 활용한 X-Band 용 8 × 4 이중편파 배열안테나에 관한 연구)

  • Jung, Jae-Woong;Seo, Deokjin;Ryu, Jong-In
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.25-32
    • /
    • 2021
  • In this paper, the Magneto-Electric(ME) dipole array antenna with dual-polarization in the X-Band is proposed and it is implemented and measured. The proposed array antenna is composed of 32 single ME dipole antenna and a Teflon PCB. 1 × 1 ME dipole antenna is implemented dual-polarization by radiating vertical polarization and horizontal polarization from two pairs of radiators. 2-port feeding structures are realized by lamination process using LTCC. And, each port independently feeds the radiator through a Γ-shaped feeding strip with isolation between ports. The Teflon PCB used in the antenna array has a 4-layer structure, and 2-port is fed through the top and bottom layers. The λg/4 transformer is applied to the transmission line of the Teflon PCB for impedance matching of the arrayed antenna and the Teflon PCB, and the optimal parameters are obtained through simulation. The measured maximum antenna gains of port 1 was 18.2 dBi, Cross-pol was 1.0 dBi. And the measured maximum antenna gains of port 1 was 18.1 dBi, Cross-pol was 3.2 dBi.

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).

SIW Slot Array Antenna for Dual-Polarization Phased Array System (이중 편파 위상 배열 시스템을 위한 기판 집적 슬롯 배열 안테나)

  • Cho, Dae-Keun;Byun, Jin-Do;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.228-235
    • /
    • 2011
  • In this paper, we propose a $4{\times}8$ SIW(Substrate Integrated Waveguide) slot array antenna for dual-polarized phased array system. The basic part of the array is a subarray comprising an vertical-polarization and horizontal-polarization. A vertical-polarization slotted SIW single-polarization linear array. Using SIW, A vertical polarization linear array consists of 8 uniform longitudinal slots and 4-way SIW feeding network. Using HMSIW, horizontal-polarization linear array consists of 8 slots and 4-way SIW feeding network.

The Antenna Design for Korea SAT-5 Satellite Communication in Ka-band (무궁화 5호 위성통신용 Ka대역 안테나 설계)

  • Kim, Chun-Won;Cheong, Chi-Hyun;Kim, Kun-Woo;Lee, Seong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.90-97
    • /
    • 2014
  • In this paper, we have designed the antenna for Korea SAT-5 Satellite Communication which can use Ka band in the earth station. The antenna structure consist of the the dual-offset gregorian reflector that has high gain and efficiency, the corrugated horn that has symmetric radiation patterns and low side lobe levels, the iris polarizer that make circular polarization and the OrthoMode Transducer that separate transmitting and receiving signals. The designed antenna gain is more than 45.7dBi in Tx-band which use LHCP and 42.0dBi in Rx-band which use RHCP. The co-polarized and cross-polarized radiation pattern comply with ITU-R S.580-6 and S.731-1 that are recommended by International Telecommunication Union in the geostationary satellite. The Axial ratio is less than 1.0dB in Tx-band and 1.5dB in Rx-band that meet MIL-STD-188-164A.

A Novel Multiple Band Antenna Design Implementing Unbalanced Feed-Lines and Meandered Patch Options (비대칭 급전선로와 패치설계를 이용한 다중대역 안테나의 설계)

  • Jung, Jin-Woo;Roh, Hyoung-Hwan;Park, Jun-Seok;Cho, Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.427-431
    • /
    • 2007
  • Applications in present-day mobile communication systems particularly require miniaturized dimensions and low-profiles of antenna in order to meet the mobile units. Thus, size reductions and bandwidth enhancements are becoming crucial design considerations for practical applications of microstrip antennas. The motivation of further experiments have been stepped to follow those studies for achieving compact and broadband, even multiplied operation modes, which are greatly increased with much attentions recently. To obtain broadband, single-feed, circularly polarized characteristics of microstrip antennas, a design with feed-line ought to be a factor of two. Usually, diagonally balanced-line feeds with hybrid coupler are employed to attain circular polarizations. We firstly formulated DGS (Defected Ground Structures) based operation principles of the entire microstrip components and therefore were able to derive impedance variance of feed-lines. After verifying corresponding experimental results, we targeted the frequency bands of UHF RFID (Ultra High Frequency Radio Frequency IDentification) and approximately of 0.4-2.4GHz have exhibited remarkable two resonance amplitudes as a dual band antenna. Our secondary researches were aimed to design quad band microstrip antenna which represents four resonance characteristics within the identical frequency bands as well. Microstrip patch has been meandered to lengthen the electrical paths, and the other design criteria with respecting physical parameters including radiation patterns and impedance bandwidths measurements will be described for verification. Advisable applications of these antennas can be GSM850, GSM900, GPS (L1-1575 and L2-1227) and UMTS-2110 of cellular systems, which extremely desire multiband and minimum size.

  • PDF

Design of Transceiver Front-end using Circular Sector Patch Antenna (원형 섹터 패치 안테나를 사용한 트랜시버 전단부 설계)

  • ;Tatsuo Itohv
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.807-811
    • /
    • 2001
  • In this paper we proposed a dual-frequency circular sector microstrip antenna with orthogonal polarized modes and high isolation between the two feeding ports. And then we designed a transceiver operating at 5.6 GHz for transmitting and at 5.5 GHz for receiving. The good isolation provided by the proposed antenna is used as the basis for the transmit-receive filtering of transceiver. The operating frequencies and polarization characteristics of the proposed antenna is calculated by using a cavity model. The 5-parameters and radiation patterns of the antenna are measured. A power amplifier and a low noise amplifier are designed and integrated with antenna to make a transceiver, which has about 13dB transmitting gain and about 8㏈ receiving gain.

  • PDF

Lifejcket-Integrated Antenna for Search and Rescue System (탐색 및 구조 시스템용 구명조끼 내장형 안테나)

  • Lim, Ji-Hun;Yang, Gyu-Sik;Jung, Sung-Hun;Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.367-371
    • /
    • 2014
  • When the crew or passengers fall into the water due to marine accident of vessel, it is very important to rescue them quickly. In the case of marine accidents, most people in distress have been wearing a lifejacket, so if the GPS and Cospas-Sarsat communication module will be integrated within the lifejacket, it is easy to rescue them. In this paper, development of the dual band lifejacket-integrated antenna for GPS and Cospas-Sarsat communication is discussed. The antenna with the FR-4 substrate of 0.2mm thickness for flexibility was designed that it can be fitted close to the shoulder of the life jacket and operate at 1.575GHz and 406MHz. The GPS communication antenna was implemented with a ring-slot antenna having a circular polarized characteristic and a meander type linear polarized antenna is used as Cospas-Sarsat communication. The two antennas are fed by a single microstrip line and an open stub is used to minimize the mutual interference between the two antennas. The performance of the fabricated antenna attached to the life vest is confirmed by the measurement of the return loss at GPS and Cospas-Sarsat frequency bands.