• Title/Summary/Keyword: Dual energy

Search Result 1,045, Processing Time 0.023 seconds

3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys (금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험)

  • Song, Yongwook;Kim, Jungjoon;Park, Suwon;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

Recalcitrant Low Back Pain Diagnosed as Hypophosphatemic Osteomalacia Induced by Antiviral Medication (항바이러스제에 의한 저인산성 골연화증으로 진단된 난치성 요통)

  • Chae, Hyun Jun;Won, Jun Hee;Lee, Won Kyung;Kim, Keewon
    • Clinical Pain
    • /
    • v.20 no.2
    • /
    • pp.131-134
    • /
    • 2021
  • We report a rare case of anti-viral agent induced hypophosphatemic osteomalacia presented with localized and radicular pain. A 51-year-old man, who had been taking adefovir for chronic hepatitis, had experienced low back pain radiating to his right thigh for 2 years. With impression of lumbar disc herniation, he underwent magnetic resonance imaging and found multi-level disc herniation with facet joint synovial cysts. He received transforaminal epidural steroid injections, however, symptoms did not improve. To find other possible causes, additional tests were performed. Blood tests revealed hypophosphatemia and increased serum alkaline phosphatase, and osteoporosis was noted in dual-energy X-ray absorptiometry with multiple hot uptakes in bone scan. After replacement of adefovir to entecavir and supplement of phosphate and vitamin D, phosphate level and the clinical symptoms were improved. This is the first to report the presentation of osteomalacia due to anti-viral agent as radicular low back pain with facet synovial cysts.

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Ben Tordoff;Cheryl Hartfield;Andrew J. Holwell;Stephan Hiller;Marcus Kaestner;Stephen Kelly;Jaehan Lee;Sascha Muller;Fabian Perez-Willard;Tobias Volkenandt;Robin White;Thomas Rodgers
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.

Exploration of Aluminum Alloy using Multi-feeder 3D Additive Manufacturing-based Combinatorial Experiment (Multi-feeder 3차원 적층제조 기반 조합실험을 활용한 알루미늄 합금탐색)

  • Suwon Park;Yongwook Song;Jiyoon Yeo;Songyun Han;Hyunjoo Choi
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.255-261
    • /
    • 2023
  • Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.

Genetic algorithm-based design of a nonlinear PID controller for the temperature control of load-following coolant systems (부하추종 냉각수 시스템의 온도 제어를 위한 유전알고리즘 기반 비선형 PID 제어기 설계)

  • Yu-Soo, LEE;Soon-Kyu, HWANG;Jong-Kap, AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • In this study, the load fluctuation of the main engine is considered to be a disturbance for the jacket coolant temperature control system of the low-speed two-stroke main diesel engine on the ships. A nonlinear PID temperature control system with satisfactory disturbance rejection performance was designed by rapidly transmitting the load change value to the controller for following the reference set value. The feed-forwarded load fluctuation is considered the set points of the dual loop control system to be changed. Real-coded genetic algorithms were used as an optimization tool to tune the gains for the nonlinear PID controller. ITAE was used as an evaluation function for optimization. For the evaluation function, the engine jacket coolant outlet temperature was considered. As a result of simulating the proposed cascade nonlinear PID control system, it was confirmed that the disturbance caused by the load fluctuation was eliminated with satisfactory performance and that the changed set value was followed.

Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death

  • Daeun Shim;Jiyeon Han
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.575-583
    • /
    • 2023
  • Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis.

Smart composite repetitive-control design for nonlinear perturbation

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.473-485
    • /
    • 2024
  • This paper proposes a composite form of fuzzy adaptive control plan based on a robust observer. The fuzzy 2D control gains are regulated by the parameters in the LMIs. Then, control and learning performance indices with weight matrices are constructed as the cost functions, which allows the regulation of the trade-off between the two performance by setting appropriate weight matrices. The design of 2D control gains is equivalent to the LMIs-constrained multi-objective optimization problem under dual performance indices. By using this proposed smart tracking design via fuzzy nonlinear criterion, the data link can be further extended. To evaluate the performance of the controller, the proposed controller was compared with other control technologies. This ensures the execution of the control program used to track position and trajectory in the presence of great model uncertainty and external disturbances. The performance of monitoring and control is verified by quantitative analysis. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

The Evaluation of Scattering Effects for Various Source Locations within a Phantom in Gamma Camera (감마카메라에서의 팬텀 내 선원 위치 변화에 따른 산란 영향 평가)

  • Yu, A-Ram;Lee, Young-Sub;Kim, Jin-Su;Kim, Kyeong-Min;Cheon, Gi-Jeong;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.216-224
    • /
    • 2009
  • $^{131}I$ is a radiological isotope being used widely for treatment of cancer as emitting gamma-ray and it is also applied to estimate the function of thyroid for its accumulation in thyroid. However, $^{131}I$ is more difficult to quantitate comapred to $^{99m}Tc$, because $^{131}I$ has multiple energy gamma-ray emissions compared to $^{99m}Tc$ which is a mono energetic gamma-ray source. Especially, scattered ray and septal penetration resulted by high energy gamma ray have a bad influence upon nuclear medicine image. The purpose of this study was to estimate scatter components depending on the different source locations within a phantom using Monte Carlo simulation (GATE). The simulation results were validated by comparing with the results of real experiments. Dual-head gamma camera (ECAM, Chicago, Illinois Siemens) with high energy, general-purpose, and parallel hole collimators (hole radius: 0.17 cm, septal thickness: 0.2 cm, length: 5.08 cm) was used in this experiment. The NaI crystal is $44.5{\times}59.1\;cm$ in height and width and 0.95 cm in thickness. The diameter and height of PMMA phantom were 16 cm and 15 cm, respectively. The images were acquired at 5 different locations of $^{131}I$ point source within the phantom and the images of $^{99m}Tc$ were also acquired for comparison purpose with low energy source. The simulation results indicated that the scattering was influenced by the location of source within a phantom. The scattering effects showed the same tendency in both simulation and actual experiment, and the results showed that the simulation was very adequate for further studies. The results supported that the simulation techniques may be used to generalize the scattering effects as a function of a point source location within a phantom.

  • PDF

Adaptive Image Rescaling for Weakly Contrast-Enhanced Lesions in Dedicated Breast CT: A Phantom Study (약하게 조영증강된 병변의 유방 전용 CT 영상의 대조도 개선을 위한 적응적 영상 재조정 방법: 팬텀 연구)

  • Bitbyeol Kim;Ho Kyung Kim;Jinsung Kim;Yongkan Ki;Ji Hyeon Joo;Hosang Jeon;Dahl Park;Wontaek Kim;Jiho Nam;Dong Hyeon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1477-1492
    • /
    • 2021
  • Purpose Dedicated breast CT is an emerging volumetric X-ray imaging modality for diagnosis that does not require any painful breast compression. To improve the detection rate of weakly enhanced lesions, an adaptive image rescaling (AIR) technique was proposed. Materials and Methods Two disks containing five identical holes and five holes of different diameters were scanned using 60/100 kVp to obtain single-energy CT (SECT), dual-energy CT (DECT), and AIR images. A piece of pork was also scanned as a subclinical trial. The image quality was evaluated using image contrast and contrast-to-noise ratio (CNR). The difference of imaging performances was confirmed using student's t test. Results Total mean image contrast of AIR (0.70) reached 74.5% of that of DECT (0.94) and was higher than that of SECT (0.22) by 318.2%. Total mean CNR of AIR (5.08) was 35.5% of that of SECT (14.30) and was higher than that of DECT (2.28) by 222.8%. A similar trend was observed in the subclinical study. Conclusion The results demonstrated superior image contrast of AIR over SECT, and its higher overall image quality compared to DECT with half the exposure. Therefore, AIR seems to have the potential to improve the detectability of lesions with dedicated breast CT.

Distribution of Calcaneal Bone Density According to the Mechanical Strain of Exercise and Calcium Intake in Premenarcheal Girls (초경전 여아에서 운동의 기계적 스트레인과 칼슘섭취량에 따른 발꿈치뼈 골밀도의 분포)

  • Shin, Eun-Kyung;Kim, Ki-Suk;Kim, Hee-Young;Lee, In-Sook;Joung, Hyo-Jee;Cho, Sung-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.3
    • /
    • pp.291-297
    • /
    • 2005
  • Objectives : The effects of exercise on bone density have been found to be inconsistent in previous studies. We conducted a cross-sectional study in premenarcheal girls to test two hypotheses to explain these inconsistencies. Firstly,'the intensity of mechanical strain, in terms of the ground reaction force(GRF), has more important effects on the bone mass at a weight-bearing site', and secondly, 'calcium intake modifies the bone response to exercise'. Methods : The areal bone mineral density was measured at the Os calcis, using peripheral dual energy X-ray absorptiometry, in 91 premenarcheal girls aged between 9 and 12 years. The intensity of mechanical strain of exercise was assessed by a self-report questionnaire and scored by the GRF as multiples of body weight, irrespective of the frequency and duration of exercise. The energy and calcium intake were calculated from the 24-hour dietary recall. An analysis of covariance(ANCOVA) was used to determine the interaction and main effects of exercise and calcium on the bone density, after adjusting for age, weight, height and energy intake. Results : The difference in the bone density between moderate and low impact exercise was more pronounced in the high than low calcium intake group. The bone density for moderate impact exercise and high calcium intake was significantly higher than that for low impact exercise (p=0.046) and low calcium intake, after adjusting for age, weight, height and energy intake. Conclusions : Our study suggests that the bone density at a weight-bearing site is positively related to the intensity of mechanical loading exercise, and the calcium intake may modify the bone response to exercise at the loaded site in premenarcheal girls.