• Title/Summary/Keyword: Dual band antenna

Search Result 394, Processing Time 0.026 seconds

Development and Evaluation of Dual-Axis X-band Antenna Pointing Mechanism for Space Applications (2축 X-band 안테나 지향 기구장치의 개발과 검증)

  • Eom, Sangcheol;Kang, Byeongsu;Kim, Hyunsop;Park, Inyong;Kim, Yeonyong;Hwang, Kyuhun;Choi, Woong;Yang, Seunguk;Lee, Hyunwoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.410-418
    • /
    • 2018
  • This paper describes the design, analysis, and verification tests of the Dual-axis X-band antenna pointing mechanism(XAPM) that has been developed for the Earth observation mission at low Earth orbits. Based on the experience of development and operation of the similar system, we defined the main points and requirements of the system design and confirmed the characteristics of the system through the verification test of the launch and orbit environment test of the engineering qualification model. Through the characteristics and verification techniques of the system acquired during this process, improvement points of the later qualification model are derived.

Design and Analysis of a Dual T type Microstrip Antennas (이중 T자 구조의 마이크로스트립 안테나 설계)

  • Lee Hyeon-Jin;Lim Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.119-123
    • /
    • 2005
  • In this paper. It is proposed and fabricated that the new antenna of dual T type structure is shifted easily center frequency. This antenna consists of dual dipoles resemblance to dual T type, which are fed by a coplanar waveguide (CPW) on signal plane. The analyzed and measured characteristic of new antenna is controled between distance of two dipoles for shifting center frequency. The proposed antenna is 450MHz bandwidth for using IMT2000 band. The characteristic parameters of the proposed antenna are analyzed by using a FDTD methods.

The Design and Fabrication for Wireless Repeater Patch Antenna of Wide-band Dual polarization (광대역 이중편파 무선 중계기용 패치안테나 설계 및 제작)

  • Lee, Han-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1287-1292
    • /
    • 2012
  • In this paper, a dual polarization patch antenna operates at the wide bandwidth of 1.525GHz~1.665GHz was designed and fabricated. To obtain the wide bandwidth and high gain, increased height of air floor from GND was applied, and to get wide band axial ratio and high gain, parasitic patch was applied. The simulation and measurement showed good agreements, the VSWR was less than 1.9 at the frequency bandwidth, the return loss was less than -10dB, and the LHCP(Left Hand Circular Polarization) and RHCP(Right Hand Circular Polarization) isolation was less than -13dB at the frequency bandwidth.

Design of Microstrip Patch Antenna on UHF Band using Multiple Meander for Metal Attached (금속 부착용 멀티 미앤더형 UHF 대역 마이크로스트립 패치 안테나 설계)

  • Park, Chan-Hong;Choi, Yong-Seok;Koo, Dong-Jin;Jang, Sung-Won;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.307-311
    • /
    • 2012
  • In this paper, a novel particle swarm optimization method based on IE3D is used to design a mobile communication Microstrip Patch Antenna. The aim of the thesis is to Design and fabricate an inset fed rectangular Microstrip Antenna and study the effect of antenna dimensions Length (L), Width (W) and substrate parameters relative Dielectric constant (${\varepsilon}r$), substrate thickness on Radiation parameters of Band width. When the antenna was designed, a dual-band, dual-polarized antenna was used to secure the bandwidth and improve performance, and a coaxial probe feeding method so that the phased array of antenna is easy.

  • PDF

Design of A Dual-Band Square Waveguide Iris Polarizer (이중대역 정사각형 도파관 아이리스 편파기 설계 기법)

  • 황순미;윤소현;김영민;최종성;김도균;안병철
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.443-446
    • /
    • 2002
  • In this paper, we present a new design method for a square iris polarizer to be used in dual-band (Ka-band; 20.8 ~21.2 ㎓, 30.6~31 ㎓) antenna feeds. Principles of operation of a square iris polarizer, its design concepts and methods are proposed. Based on proposed methods, a Ka- band polarizer with -35 dB return loss and 0.3 dB axial ratio is designed using the commercial software HFSS.

  • PDF

Design and Fabrication of Dual-Band Planar Monopole Antenna with Defected Ground Structure for WLAN Applications (WLAN 시스템에 적용 가능한 결함 접지 구조를 갖는 이중대역 평면형 모노폴 안테나 설계 및 제작)

  • Kang, Byeong-Nam;Rhee, Seung-Yeop;Jeong, Min-Joo;Choi, Domin;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.42-49
    • /
    • 2018
  • In this paper, a dual-band microstrip-fed monopole antenna with a DGS(defected ground structure) for WLAN(wireless local area network) applications is presented. The antenna consists of a monopole and a defected ground, which were etched on both sides of the FR-4 substrate. The defected ground structure was used to obtain the dual band, while the step-by-step reduction in the monopole width was used to improve the impedance matching of the antenna. The antenna has an overall compact size of $44{\times}51{\times}1.6mm^3$, which was optimized by varying the size of the monopole and the ground plane such that it may resonate at the 2.4 GHz and 5 GHz bands of the WLAN. The measurement results showed that the antenna operates in the frequency band of 210 MHz(2.29~2.50 GHz) and 900 MHz(5.05~5.95 GHz) for a VSWR under 2, and showed omnidirectional radiation pattern at all desired frequencies.

Design of Dual-band Stacked Meander Line Antenna with Double Coupled Line (이중 커플드 라인을 이용한 이중 대역 적층형 미앤더 라인 안테나)

  • Jung, Jin-Woo;Seo, In-Jong;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.993-999
    • /
    • 2006
  • This paper presents the design simulation, implementation, and measurement of a miniaturized DCS, PCS / Satellite DMB dual-band stacked chip antenna with double coupled line for mobile communication terminals. A stacked meander is realized by using a via hole with height of 0.8 mm and a diameter of 0.35 mm to connect upper- and lower-layer meander sections for a reduction of the dimensions of the antenna. In addition the stacked meander chip antenna is extended by a double coupled-line to achieve two different radiation modes. A ratio of the first frequency and second frequency vary with the geometrical parameter of coupled lines. The fabricated antenna used FR-4 substrate with relative permittivity of 4.2. And its dimensions are $15.2{\times}7{\times}0.8mm^3$. The measured impedance bandwidth(VSRW<2) are 244 and 120 MHz at the operating frequency, respectively.

A Design of Dual-band Stacked Helix Monopole Antenna with Parasitic Patch (기생 패치를 이용한 이중 대역 적층형 헬릭스 모노폴 안테나 설계)

  • Jung, Jin-Woo;Kim, Kyoung-Keun;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.155-161
    • /
    • 2007
  • This paper presents the design simulation, implementation, and measurement of a miniaturized PCS / Satellite DMB dual-band stacked mompole antenna with a parasitic patch for mobile communication terminals. A stacked helix is realized by using a via hole with height of 0.4 mm and a diameter of 0.35 mm to connect upper- and lower-layer helix sections for a reduction of the dimensions of the antenna. In addition the stacked helix chip antenna is interleaved with a parasitic patch to achieve two different radiation modes. The ratio of the first frequency and the second frequency vary with the geometrical parameter of the parasitic patch. The fabricated antenna uses FR-4 substrate with a relative permittivity of 4.2. Its dimensions are $15.5{\times}7.6{\times}0.4 mm^3$. The measured impedance bandwidths (VSWR<2) are 240 and 250 MHz at the operating frequencies, respectively.

Design and Implementation of UWB Antenna with Band Rejection Characteristics (대역저지 특성을 갖는 초광대역 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon;Yu, Jae Seong;Oh, Hee Oun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • In this paper, we designed and implemented an ultra wideband(UWB) antenna with band rejection characteristics. The proposed antenna consists of a planar radiation patch with slots and ground planes on both sides. Due to the slots in the radiation patch, the antenna shows band rejection characteristics. U-type slot contributes for wireless local area network(WLAN, 5.15~5.825 GHz) band rejection and n-type slot contributes for X-Band(7.25~8.395 GHz) band rejection. To make voltage standing wave ratio(VSWR) less than 2.0 for UWB frequency band except rejection bands, the shapes of planar radiation patch and ground plane was modified. The Ansoft 's high frequency structure simulator(HFSS) was used for the design process and simulations of the proposed antenna. The simulated antenna showed VSWR less than 2.0 for all UWB band excepts for dual rejection bands of 5.15 ~ 5.94 GHz and 7.02 ~ 8.45 GHz. And measured VSWR for the implemented antenna is less than 2.0 for all UWB band of 3.10~10.60 GHz excluding dual rejection bands of 5.12~5.95 GHz and 7.20~8.58 GHz.

Dual-Band Class F Power Amplifier using CRLH-TLs for Multi-Band Antenna System (다중밴드 안테나 시스템을 위한 CRLH 전송선로를 이용한 이중대역 Class F 전력증폭기)

  • Kim, Sun-Young;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, a highly efficiency power amplifier is presented for multi-band antenna system. The class F power amplifier operating in dual-band designed with one LDMOSFET. An operating frequency of power amplifier is 900 MHz and 2.14 GHz respectively Matching networks and harmonic control circuits of amplifier are designed by using the unit cell of composite right/left-handed(CRLH) transmission line(TL) realized with lumped elements. The CRLH TL can lead to metamaterial transmission line with the dual-band holing capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of all harmonic components for high efficiency is very difficult, we have controled only the second- and third-harmonics to obtain the high efficiency with the CRLH TL. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency.