• Title/Summary/Keyword: Dual Time Stepping

Search Result 38, Processing Time 0.03 seconds

Unsteady cascade flow calculations of using dual time stepping and the k-$\omega$ turbulence model (이중시간전진법과 k-$\omega$ 난류모델을 이용한 익렬 내부 비정상 유동해석)

  • Choe, Chang-Ho;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1624-1634
    • /
    • 1997
  • A numerical study on two-dimensional unsteady transonic cascade flow has been performed by adopting dual time stepping and the k-.omega. turbulence model. An explicit 4 stage Runge-Kutta scheme for the compressible Navier-Stokes equations and an implicit Gauss-Seidel iteration scheme for the k-.omega. turbulence model are proposed for fictitious time stepping. This mixed time stepping scheme ensures the stability of numerical computation and exhibits a good convergence property with less computation time. Typical steady-state convergence accelerating schemes such as local time stepping, residual smoothing and multigrid combined with dual time stepping shows good convergence properties. Numerical results are presented for unsteady laminar flow past a cylinder and turbulent shock buffeting problem for bicircular arc cascade flow is discussed.

Time accurate method for low speed compressible flows using dual time stepping and preconditioning procedure (이중 시간전진법과 Preconditioning을 이용한 저속의 압축성유동에 대한 비정상 해석기법)

  • Choe, Yun-Ho;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.788-802
    • /
    • 1998
  • A numerical method using dual time stepping and preconditioning procedure for efficient computations of unsteady low speed compressible flow problems is developed. The time-derivative preconditioning method which is valid at low speed flow conditions cannot maintain temporal accuracy because of the modification of the time-derivative term in Navier-Stokes equations. The dual time stepping procedure is incorporated to enable the time accurate computations and this procedure introduces a pseudo-time derivative in addition to the physical time derivative. At a given physical time, an inner iteration can be carried out until a steady state in pseudo-time is achieved. This will effectively yield a time accurate solution. Computational capabilities of the above algorithm are demonstrated through computation of a variety of practical fluid flows and it is shown that the algorithms is efficient in the essentially incompressible flows and low Mach number compressible flows with heat source.

Development of An Unsteady Navier-Stokes Solver using Implicit Dual Time Stepping Method and DADI Scheme (내재적 이중시간 전진기법과 DADI 기법을 이용한 비정상 Navier-Stokes 코드개발)

  • Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.34-40
    • /
    • 2005
  • In present study, a two dimensional unsteady Navier-Stokes solver has been developed using the Diagonalized ADI (DADI) method and implicit dual time stepping method. The jacobian matrices in steady state Navier-Stokes equations are introduced from inviscid flux terms. The implicit treatment of artificial dissipation terms results in a block penta-diagonal matrix system and it becomes a scalar penta-diagonal matrix by diagonalization. In steady state equations about fictitious time, a new residual including a real time derivative term is introduced. From a converged solution about fictitious time, a real time unsteady solution can be obtained, which is called 'implicit dual time stepping method'. For code validation, an oscillating flat plate, a regular Karman vortices past a circular cylinder and shock buffeting around a bicircular airfoil problems are numerically solved. And they are compared with a theoretical solution, experiments and other researcher's computations.

Numerical Analysis of Viscous Flow on the Periodic Oscillating Flat Plate using Unsteady CFD Code (비정상 CFD 코드를 이용한 주기성 하모닉 진동 평판 위의 점성유동 수치해석)

  • Lee, Eunseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1000-1002
    • /
    • 2017
  • Here, the unsteady Navier-Stokes solver has been developed using implicit dual time stepping method. The implicit dual time stepping method introduced the pseudo time step for solving the new residual including the steady state residual and real time derivative. For the validation of code, Stokes 2nd problem, the laminar flow on the oscillating flat plate was selected and compare the calculating results with analytic solutions. The calculating velocity profile and skin friction has a good agreement with analytic solutions.

  • PDF

Development of a 3-D Unsteady Viscous Flow Solver on Deforming Unstructured Meshes (변형되는 비정렬 격자계를 이용한 삼차원 비정상 점성 유동 계산 기법 개발)

  • Kim J. S.;Kwon O. J.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.52-61
    • /
    • 2004
  • In the present study, a solution algorithm for the computation of unsteady flows on unstructured meshes is presented. Dual time stepping is incorporated to achieve the second-order temporal accuracy while reducing errors associated with linearization and factorization. This allows any time step size, which is suitable for considering physical phenomena of interest. The Gauss-Seidel scheme is used to solve the linear system of equations. A special treatment based on spring analogy is made to handle meshes with high aspect-ratio cells. The present method was validated by comparing the results with experimental data and those obtained from rigid motion.

Computation of 3-Dimensional Unseady Flows Using an Parallel Unstructured Mesh (병렬화된 비정렬 격자계를 이용한 3차원 비정상 유동 계산)

  • Kim Joo Sung;Kwon Oh Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.59-62
    • /
    • 2002
  • In the present study, solution algorithms for the computation of unsteady flows on an unstructured mesh are presented. Dual time stepping is incorporated to achieve the 2-nd order temporal accuracy while reducing the linearization and the factorization errors associated with a linear solver. Hence, any time step can be used by only considering physical phenomena. Gauss-Seidel scheme is used to solve linear system of equations. Rigid motion and spring analogy method fur moving mesh are all considered and compared. Special treatments of spring analogy for high aspect ratio cells are presented. Finally, numerical results for oscillating wing are compared with experimental data.

  • PDF

Computation of 3-Dimensional Unsteady Viscous Plows Using an Parallel Unstructured Mesh (병렬화된 비정렬 격자계를 이용한 3차원 비정상 점성 유동 계산 기법 개발)

  • Kim J.S.;Kwon O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.18-24
    • /
    • 2003
  • In the present study, solution algorithms for the connotation of unsteady flows on an unstructured mesh me presented Dual time stepping is incorporated to achieve the 2-nd order temporal accuracy while reducing the linearization and the factorization errors associated with a linear solver. Hence, any time step can be used by only considering physical phenomena. Gauss-Seidel scheme is used to solve linear system of equations. Rigid motion and suing analogy method for moving mesh are all considered and compared. Special treatments of suing analogy for high aspect ratio cells are presented. Finally, numerical results for oscillating ing are compared with experimental data.

  • PDF

Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model (저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석)

  • Choi, Chang Ho;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

A Preconditioning Method for Two-Phase Flows with Cavitation

  • Shin B.R.;Yamamoto S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.181-182
    • /
    • 2003
  • A preconditioned numerical method for gas-liquid to-phase flow is applied to solve cavitating flow. The present method employs a density based finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a venturi tuve and decelerating cascades are computed and discussed.

  • PDF