• Title/Summary/Keyword: Dual Interface

Search Result 170, Processing Time 0.029 seconds

Crack Problem at Interface of Piezoelectric Strip Bonded to Elastic Layer Under Anti-Plane Shear

  • Lee, Kang-Yong;Kwon, Jong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.61-65
    • /
    • 2001
  • Using the theory of linear piezoelectricity, the problem of two layered strip with a piezoelectric ceramic bonded to an elastic material containing a finite interface crack is considered. The out-of-plane mechanical and in-plane electrical loadings are simultaneously applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The stress intensity factor is determined, and numerical analyses for several materials are performed and discussed.

  • PDF

Grain Refinement and Phase Transformation of Friction Welded Carbon Steel and Copper Joints

  • Lee, W.B.;Lee, C.Y.;Yeon, Y.M.;Kim, K.K.;Jung, S.B
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.46-52
    • /
    • 2003
  • The refinement of microstructure and phase transformation near the interface of pure copper/carbon steel dissimilar metals joints with various friction welding parameters have been studied in this paper. The microstructure of copper and carbon steel joints were changed to be a finer grain compared to those of the base metals due to the frictional heat and plastic deformation. The microstructure of copper side experienced wide range of deformed region from the weld interface and divided into very fine equaxied grains and elongated grains. Especially, the microstructures near the interface on carbon steel were transformed from ferrite and pearlite dual structure to fine ferrite, grain boundary pearlite and martensite due to the welding thermal cycle and rapid cooling rate after welding. These microstructures were varied with each friction welding parameters. The recrystallization on copper side is reason for softening in copper side and martensite transformation could explain the remarkable hardening region in carbon steel side.

  • PDF

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.

A 2.496 Gb/s Reference-less Dual Loop Clock and Data Recovery Circuit for MIPI M-PHY (2.496Gb/s MIPI M-PHY를 위한 기준 클록이 없는 이중 루프 클록 데이터 복원 회로)

  • Kim, Yeong-Woong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.899-905
    • /
    • 2017
  • This paper presents a reference-less dual loop clock and data recovery (CDR) circuit that supports a data rate of 2.496 Gb/s for the mobile industry processor interface (MIPI) M-PHY. An adaptive loop bandwidth scheme is used to implement the fast lock time maintaining a low time jitter. To this scheme, the proposed CDR consists of two loops for a frequency locked loop and a phase locked loop. The proposed 2.496 Gb/s reference-less dual loop CDR is designed using a 65 nm CMOS process with 1.2 V supply voltage. The simulated peak-to-peak jitter of output clock is 9.26 ps for the input data of 2.496 Gb/s pseudo-random binary sequence (PRBS) 15. The active area and power consumption of the implemented CDR are $470{\times}400{\mu}m^2$ and 6.49 mW, respectively.

Investigation of the behavior of a crack between two half-planes of functionally graded materials by using the Schmidt method

  • Zhou, Zhen-Gong;Wang, Biao;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.425-440
    • /
    • 2005
  • In this paper, the behavior of a crack between two half-planes of functionally graded materials subjected to arbitrary tractions is resolved using a somewhat different approach, named the Schmidt method. To make the analysis tractable, it is assumed that the Poisson's ratios of the mediums are constants and the shear modulus vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effect of the crack length and the parameters describing the functionally graded materials upon the stress intensity factor of the crack. It can be shown that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. It is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.

Enhancing Multiple Steady-State Visual Evoked Potential Responses Using Dual-frequency tACS (이중 주파수 tACS를 이용한 안정상태 시각 유발 전위 반응 향상)

  • Jeonghui Kim;Sang-Su Kim;Young-Jin Jung;Do-Won Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI) is one of the promising systems that can serve as an alternative input device due to its stable and fast performance. However, one of the major bottlenecks is that some individuals exhibit no or very low SSVEP responses to flickering stimulation, known as SSVEP illiteracy, resulting in low performance on SSVEP-BCIs. However, a lengthy duration is required to enhance multiple SSVEP responses using traditional single-frequency transcranial alternating current stimulation (tACS). This research proposes a novel approach using dual-frequency tACS (df-tACS) to potentially enhance SSVEP by targeting the two frequencies with the lowest signal-to-noise ratio (SNR) for each participant. Seven participants (five males, average age: 24.42) were exposed to flickering checkerboard stimuli at six frequencies to determine the weakest SNR frequencies. These frequencies were then simultaneously stimulated using df-tACS for 20 minutes, and the experiment was repeated to evaluate changes in SSVEP responses. The results showed that df-tACS effectively enhances the SNR at each targeted frequency, suggesting it can selectively improve target frequency responses. The study supports df-tACS as a more efficient solution for SSVEP illiteracy, proposing further exploration into multi-frequency tACS that could stimulate more than two frequencies, thereby expanding the potential of SSVEP-BCIs.

An Implementation of the Dual Packet Seamless Transfer Protocol for Safety-related Railway Signaling System Network (철도 신호시스템의 Fail-Safe 네트워크를 위한 DPST(Dual Packet Seamless Transfer) 프로토콜의 구현)

  • Kim, Kyung-Shik;Ryu, Shin-Hyung;Kwon, Cheol;Lee, Jong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.396-405
    • /
    • 2009
  • An interlocking equipment of railway signalling systems should have very high functional safety and reliability properties because of its vital railway protection functionality. In order to achieve the required safety and reliability level, an engineer, in general, designs and implements the interlocking equipment to operate under RTOS(Realtime Operating System) environment, and the control hardware architecture redundant to cope with the random failures of system or subsystem. In such an architecture, it's very difficult to implement the interlocking equipment to communicate with various interface systems including the signal operator's terminal. In this paper, we propose a dual ethernet network topology and dual packet seamless transfer protocol algorithm for railway signaling system such as the interlocking equipment. We verify in this paper that the proposed DPST protocol algorithm has the evidence of its robust properties against the random hardware faults and communication errors. The proposed communication structure and algorithm is implemented in the electronic interlocking equipment for the private railway system of Hyundai Steel Company and its performance and properties are validated on the guideline of European Railway Standard EN50159.

  • PDF

HIPSS : A RAID System for SPAX (HIPSS : SPAX(주전산기 IV) RAID시스템)

  • 이상민;안대영;김중배;김진표;이해동
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.9-19
    • /
    • 1998
  • RAID technology that provides the disk I/O system with high performance and high availability is essential for OLTP server. This paper describes the design and implementation of the HIPSS RAID system that has been developed for the SPAX OLTP server. HIPSS has the following design objectives: high performance, high availability, standardization and modularization of external interface, and ease of maintenance. It guarantees high performance by providing 10 independent I/O channels, large data cache, and parity calculation engine. Hardware modularization of the host interface makes it easy to replace host interface hardware module. By providing dual power supply, dual array controller, and disk hot swapping, it provides the system with high availability Implementation of HIPSS and integration test on SPAX has been completed and performance measurement on HIPSS is now going on. In this paper, we provide the detail description for HIPSS system architecture and the implementation results.

  • PDF

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.