• 제목/요약/키워드: Dual Energy Computed Tomography

검색결과 60건 처리시간 0.02초

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.

Spectral Computed Tomography: Fundamental Principles and Recent Developments

  • Aaron So;Savvas Nicolaou
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.86-96
    • /
    • 2021
  • CT is a diagnostic tool with many clinical applications. The CT voxel intensity is related to the magnitude of X-ray attenuation, which is not unique to a given material. Substances with different chemical compositions can be represented by similar voxel intensities, making the classification of different tissue types challenging. Compared to the conventional single-energy CT, spectral CT is an emerging technology offering superior material differentiation, which is achieved using the energy dependence of X-ray attenuation in any material. A specific form of spectral CT is dual-energy imaging, in which an additional X-ray attenuation measurement is obtained at a second X-ray energy. Dual-energy CT has been implemented in clinical settings with great success. This paper reviews the theoretical basis and practical implementation of spectral/dual-energy CT.

방사선 투과 및 불투과성 물질에 따른 감약 차이의 분석 : DECT 검사 중심으로 (Analysis of Attenuation Differences According to Radiolucent and Radiopague Materials : Based on DECT (Dual Energy Computed Tomography))

  • 장현철;김윤신;김현주
    • 한국산학기술학회논문지
    • /
    • 제15권3호
    • /
    • pp.1584-1589
    • /
    • 2014
  • 본 연구는 경기도 소재 S 대학병원에서 2013년 7월부터 8월까지 GE 사의 DECT(Dual Energy Computed Tomography)를 이용하여 방사선 투과 및 불투과성 물질을 임의로 선정, 에너지 영역 대별로 투과 및 불투과성 물질의 CT 값을 분석하였다. 또한, CT 값 분석 법을 이용하여 기존의 SECT(Single Energy Computed Tomography)에서 적용되는 120kVp CT 값과 가장 유사한 에너지 영역대를 도출하였으며 임상 적용 시 가시 영역 범위 내에서 대조도를 주었을 때 가장 유용하며 적절한 물질을 알아보았다. 결론으로 생리식염수, 메틸셀룰로스, 초음파용 젤과 같이 밀도가 낮고 수분 함유량이 많은 경우 90KeV 이후 CT 값의 감소가 거의 없었으며, 공기와 조영제처럼 밀도가 매우 낮거나 높은 물질의 경우 에너지의 영향을 적게 받는 것으로 분석되었으며 메틸셀룰로오스와 초음파 젤의 경우 임상 적용 시 가장 유용성이 있는 물질로 사료된다.

Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging

  • Cherry Kim;Wooil Kim;Sung-Joon Park;Young Hen Lee;Sung Ho Hwang;Hwan Seok Yong;Yu-Whan Oh;Eun-Young Kang;Ki Yeol Lee
    • Korean Journal of Radiology
    • /
    • 제21권7호
    • /
    • pp.838-850
    • /
    • 2020
  • Computed tomography (CT) is an important imaging modality in evaluating thoracic malignancies. The clinical utility of dual-energy spectral computed tomography (DESCT) has recently been realized. DESCT allows for virtual monoenergetic or monochromatic imaging, virtual non-contrast or unenhanced imaging, iodine concentration measurement, and effective atomic number (Zeff map). The application of information gained using this technique in the field of thoracic oncology is important, and therefore many studies have been conducted to explore the use of DESCT in the evaluation and management of thoracic malignancies. Here we summarize and review recent DESCT studies on clinical applications related to thoracic oncology.

Dual-Energy CT for Pulmonary Embolism: Current and Evolving Clinical Applications

  • Yoo Jin Hong;Jina Shim;Sang Min Lee;Dong Jin Im;Jin Hur
    • Korean Journal of Radiology
    • /
    • 제22권9호
    • /
    • pp.1555-1568
    • /
    • 2021
  • Pulmonary embolism (PE) is a potentially fatal disease if the diagnosis or treatment is delayed. Currently, multidetector computed tomography (MDCT) is considered the standard imaging method for diagnosing PE. Dual-energy CT (DECT) has the advantages of MDCT and can provide functional information for patients with PE. The aim of this review is to present the potential clinical applications of DECT in PE, focusing on the diagnosis and risk stratification of PE.

양성자치료계획을 위한 이중에너지 전산화단층촬영 잡음 제거 영상 기반 저지능비 추정 방법 (Stopping Power Ratio Estimation Method Based on Dual-energy Computed Tomography Denoising Images for Proton Radiotherapy Planning)

  • 조병두
    • 한국방사선학회논문지
    • /
    • 제17권2호
    • /
    • pp.207-213
    • /
    • 2023
  • 전산화단층촬영(computed tomography, CT) 영상은 양성자 브레그 피크 위치 추정 및 치료 계획 시뮬레이션의 기초로 사용된다. Hounsfield Unit(HU) 기반의 양성자 저지능비(stopping pwer ratio, SPR) 예측 과정에서 환자의 밀도와 원소 구성의 작은 차이로 양성자 빔의 경로를 따라 브레그 피크 위치의 불확실성이 발생한다. 본 연구에서는 브레그 피크 위치 예측 불확실성 감소를 위하여 이중에너지 전산화단층촬영 영상 기반의 양성자 저지능비 예측 정확도의 잠재력을 연구를 하였다. 양성자 빔의 저지능비를 추정하기 위해 전산화단층촬영 시스템(Somatom Definition AS, Siemens Health Care, Forchheim, Germany)을 이용하여 전자밀도팬텀(CIRS Model 062M electron density phantom, CIRS Inc., Norfolk, VA, USA)의 단일에너지 및 이중에너지 영상을 획득하였다. 이를 검증하기 위해 미국 국립 표준기술 연구소(National Institute of Standards and Technology, NIST)에서 제공하는 표준 데이터를 통하여 추정한 실제 저지능비와 비교하였다. 그 결과 잡음이 제거된 이중에너지 영상 기반 방법을 통한 양성자 빔의 저지능비 예측에서 정확도 개선 가능성을 확인할 수 있었으며, 인체의 다양한 밀도와 원소 구성을 가진 대체물을 더욱 다양하게 제작하여 저지능비를 예측 할 경우 더욱 향상된 양성자의 브레그 피크 위치 예측이 가능할 것으로 사료된다.

Utility of the computed tomography indices on cone beam computed tomography images in the diagnosis of osteoporosis in women

  • Koh, Kwang-Joon;Kim, Kyoung-A
    • Imaging Science in Dentistry
    • /
    • 제41권3호
    • /
    • pp.101-106
    • /
    • 2011
  • Purpose : This study evaluated the potential use of the computed tomography indices (CTI) on cone beam CT (CBCT) images for an assessment of the bone mineral density (BMD) in postmenopausal osteoporotic women. Materials and Methods : Twenty-one postmenopausal osteoporotic women and 21 postmenopausal healthy women were enrolled as the subjects. The BMD of the lumbar vertebrae and femur were calculated by dual energy X-ray absorptiometry (DXA) using a DXA scanner. The CBCT images were obtained from the unilateral mental foramen region using a PSR-$9000N^{TM}$ Dental CT system. The axial, sagittal, and coronal images were reconstructed from the block images using $OnDemend3D^{TM}$. The new term "CTI" on CBCT images was proposed. The relationship between the CT measurements and BMDs were assessed and the intra-observer agreement was determined. Results : There were significant differences between the normal and osteoporotic groups in the computed tomography mandibular index superior (CTI(S)), computed tomography mandibular index inferior (CTI(I)), and computed tomography cortical index (CTCI). On the other hand, there was no difference between the groups in the computed tomography mental index (CTMI: inferior cortical width). Conclusion : CTI(S), CTI(I), and CTCI on the CBCT images can be used to assess the osteoporotic women.

APPLICATION OF A DUAL-ENERGY MONOCHROMATIC XRAY CT ALGORITHM TO POLYCHROMATIC X-RAY CT: A FEASIBILITY STUDY

  • Chang, S.;Lee, H.K.;Cho, G.
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.61-70
    • /
    • 2012
  • In this study, a simple post-reconstruction dual-energy computed tomography (CT) method is proposed. A dual-energy CT algorithm for monochromatic x-rays was adopted and applied to the dual-energy CT of polychromatic x-rays by assigning a representative mono-energy. The accuracy of algorithm implementation was tested with mathematical phantoms. To test the sensitivity of this algorithm to the inaccuracy of representative energy value in energy values, a simulation study was performed with mathematical phantom. To represent a polychromatic x-ray energy spectrum with a single-energy, mean energy and equivalent energy were used, and the results were compared. The feasibility of the proposed method was experimentally tested with two different micro-CTs and a test phantom made of polymethyl methacrylate (PMMA), water, and graphite. The dual-energy calculations were carried out with CT images of all possible energy pairs among 40, 50, 60, 70, and 80 kVp. The effective atomic number and the electron density values obtained from the proposed method were compared with theoretical values. The results showed that, except the errors in the effective atomic number of graphite, most of the errors were less than 10 % for both CT scanners, and for the combination of 60 kVp and 70 kVp, errors less than 6.0 % could be achieved with a Polaris 90 CT. The proposed method shows simplicity of calibration, demonstrating its practicality and feasibility for use with a general polychromatic CT.

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • 한국의학물리학회지:의학물리
    • /
    • 제32권1호
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.