• Title/Summary/Keyword: Dry-air

Search Result 1,458, Processing Time 0.059 seconds

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Effect of Chemical Forms of Nitrogen Fertilizers on Rice Growth and Soil Characteristics (시용(施用) 질소(窒素)의 화학적(化學的) 형태(形態)가 수도생육(水稻生育) 및 토양특성(土壤特性)에 미치는 영향(影響))

  • Yoo, Sun-Ho;Song, Kwan-Cheol;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.242-252
    • /
    • 1984
  • A port experiment was conducted to compare the effect of chemical forms of nitrogen fertilizers on the rice growth and soil characteristics. The nitrogen fertilizers used for this study were ammonium sulfate, ammonium nitrate, ammonium chloride and urea. The results are summarized as follows. 1. The differences in pH of the soil and surface water between treatments during the first week after fertilizer application were great and the pH values were in the order of urea > ammonium nitrate > ammonium sulfate > ammonium chloride treatment. However the differences were insignificant after the first week. 2. The differences in pH of the air-dried soil somewhat increased and pH values were in the order of urea > ammonium nitrate > ammonium chloride > ammonium sulfate treatment. 3. Sulfur contents of the soil and the rice leaf and N content of the rice leaf were highest when ammonium sulfate was applied. But there were few differences between the treatments in total N content of the soil and in P, K, Ca and Mg contents of the soil and the rice leaf. 4. Number of tillers and dry matter weight of the rice plant were highest in ammonium sulfate plot throughout all the growing stages. 5. Number of panicle per hill was highest in ammonium sulfate plot, and this brought the highest grain yield in ammonium sulfate plot. The lowest grain yield in ammonium nitrate plot resulted from the lowest number of panicle per hill and ripened grain ratio.

  • PDF

Growth and Phytochemicals of Lettuce as Affected by Light Quality of Discharge Lamps (방전램프의 광질에 따른 상추의 생장 및 파이토케미컬 분석)

  • Lee, Jae Su;Nam, Sang Woon;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.400-407
    • /
    • 2013
  • This study was performed to analyze the effect of light quality of discharge lamp on growth and phytochemicals contents of lettuce (Lactuca sativa L. cv. Jeokchima) grown under metal halide (MH) lamp, high-pressure sodium (HPS) lamp, and xenon (XE) lamp in a plant factory. Cool-white fluorescent (FL) lamp was used as the control. Photoperiod, air temperature, relative humidity, $CO_2$ concentration, and photosynthetic photon flux (PPF) in a plant factory were 16/8 h (day/night), $22/18^{\circ}C$, 70%, 400 ${\mu}mol{\cdot}mol^{-1}$, and 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. MH lamp had the greatest fraction of blue light (400-500 nm) of 23.0%. However, HPS lamp had the lowest fraction of 4.7% for blue light and the greatest fraction of 38.0% for red light (600-700 nm). At 11 and 21 days after transplanting, leaf length, leaf width, leaf area, shoot fresh weight, and shoot dry weight of lettuce as affected by the light quality of the discharge lamp were significantly different. The leaf area of lettuce grown under HPS, MH, and XE lamp increased by 45.7%, 16.3%, and 9.5%, respectively, as compared to the control. These results were similar for shoot fresh weight. Growth characteristics of lettuce grown under HPS lamp increased since HPS lamp had more fraction of red light. However, growth of lettuce grown under MH and XE lamp decreased since they had more fraction of blue light. As compared to the control, the ascorbic acid in lettuce leaves grown under discharge lamp decreased. The greatest anthocyanins accumulation of 0.70 mg/100 g was found at MH treatment. Anthocyanins content in lettuce leaves grown under XL and HPS lamp were 79.3% and 8.6%, respectively, compared with the control. Growth and phytochemicals contents of lettuce were highly affected by the different spectral distribution of the discharge lamp. These results indicate that the combination of discharge lamp or LED lamp for enhancing the light quality of discharge lamps is required to increase the growth and phytochemicals accumulation of lettuce in controlled environment such as plant factory.

Effects of Artificial Light Sources on the Photosynthesis, Growth and Phytochemical Contents of Butterhead Lettuce (Lactuca sativa L.) in the Plant Factory (식물공장에서 인공광원의 종류가 반결구상추의 광합성, 생육 및 기능성물질 함량에 미치는 영향)

  • Kim, Dong Eok;Lee, Hye Jin;Kang, Dong Hyeon;Lee, Gong In;Kim, You Ho
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.392-399
    • /
    • 2013
  • This study aimed to investigate responses of photosynthesis, plant growth, and phytochemical contents to different artificial light sources for 'Seneca RZ' and 'Gaugin RZ' two butterhead lettuce (Lactuca sativa L.). In this study, fluorescent lamps (FL), three colors LEDs (red, blue and white, 5 : 4 : 1; RBW) and metalhalide lamps (MH) were used as artificial lighting sources. Photoperiod, air temperature, relative humidity, EC, and pH in a cultivation system were maintained at 16/8 h, $25/15^{\circ}C$, 60~70%, $1.4{\pm}0.2dS{\cdot}m^{-1}$, and $6.0{\pm}0.5$, respectively. The photosynthetic rate of both two butterhead lettuce were the highest under RBW in middle growth stage. However, in late growth stage, the photosynthetic rate of both two butterhead lettuce were higher under RBW and MH than FL. The light sources showed significant results for plant growth but those effects were different to variety. Fresh and dry weight of 'Gaugin RZ' butterhead lettuce under MH were heavier than other lights in all growth stages. Growth of 'Seneca RZ' butterhead lettuce was maximized highest under MH in middle growth stage and FL in late growth stage. In the leaf tissue of 'Seneca RZ' butterhead lettuce, tipburn symptom occurred under all light sources and in the leaf tissue of 'Gaugin RZ' butterhead lettuce, it occurred under two light sources except for fluorescent lamps in late growth stage. kinds of lamp affect plant growth more than plant quality. Relative growth rate of both two butterhead lettuce was faster in middle growth stage than late stage. Growth of 'Gaugin RZ' was shown by kinds of lamp in middle growth stage and but it was not significantly affected by light sources and variety in late stage. Most of the phytochemical contents of two butterhead lettuce were significantly affected by different light sources. Contents of all vitamins showed higher than other light sources on RBW for both two lettuce, especially ${\beta}$-Carotene content of 'Gaugin RZ' was the highest. Plant growth, photosynthesis, and phytochemical contents were observed significant effects by different light sources for two butterhead lettuce but those effects were highly different between variety and kinds of phytochemicals. Therefore, the selection of optimum light source should be considered by variety and kinds of phytochemicals in the plant factory.

Processing Factor of Matrine in Chilli Pepper (홍고추 중 matrine의 가공계수)

  • Noh, Hyun Ho;Lee, Jae Yun;Kim, Jin Chan;Jeong, Oh Seok;Kim, Hye Sung;Lee, Yong Hun;Choi, Ji Hee;Om, Ae Son;Hong, Su Myeong;Paik, Min Kyoung;Kim, Doo Ho;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.244-248
    • /
    • 2013
  • This study was carried out to investigate the residual characteristics and calculate processing factor of the environment friendly material matrine in fresh chilli pepper by drying. Spray solution of matrine was prepared by dilution of the commercial product (2% active ingredient) with water at 1 : 1000 (v/v) ratio and sprayed onto chilli pepper plants at seven day intervals. Samples were collected at 0, 1, 3, 5 and 7 days after last application and then dried using a hot air dry oven at $60^{\circ}C$ for 36 hours until the water content was reduced to 14%. Recoveries and storage period stabilities of matrine in the samples ranged from 106.6 to 119.1% and 106.6 to 113.1%, respectively. The residual concentrations of matrine in fresh chilli pepper and dried chilli peppers treated only once were found to be from less than 0.01 to 0.11 and from 0.03 to 0.25 mg/kg, respectively. In case of plants sprayed twice with matrine, the residual concentrations ranged from 0.02 to 0.12 and from 0.04 to 0.4 mg/kg, respectively. Processing factor of matrine in the fresh chilli pepper by drying was found to be from 1.5 to 3.3, indicating that the residual concentration of matrine in dried chilli pepper increased about two or three times by drying.

Comparison of Fermentation Characteristics of Italian Ryegrass (Lolium multiflorum Lam.) and Guineagrass (Panicum maximum Jacq.) during the Early Stage of Ensiling

  • Shao, Tao;Zhang, Z.X.;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1727-1734
    • /
    • 2005
  • The fermentation characteristics and mono- and di-saccharides compositions during the early stage of ensiling were studied with a temperate grass, Italian ryegrass (Lolium multiflorum Lam.) and a tropical grass, guineagrass (Panicum maximum Jacq.). The laboratory silos were kept in the room set at 25$^{\circ}C$, and then were opened on 0.5, 1, 2, 3, 5 and 7 days (14 days in Italian ryegrass) after ensiling, respectively. The Italian ryegrass silage showed a fast and large pH decrease caused by a fast and large production of lactic acid during the first 5 days of ensiling and succeeded to achieve lactic acid type fermentation; high lactic acid/acetic acid and lactic acid content at the end of ensiling (14 days), low values of pH (3.74), acetic acid, ethanol and ammonia-N/total nitrogen, none or only small amounts of Butyric acid, valeric acid and propionic acid. The guineagrass silage showed a slow decrease in pH and a slow increase in lactic acid content during the full ensiling period, causing a high final pH value, low contents of lactic acid, acetic acid, total volatile fatty acids and total organic acids. In Italian ryegrass silage, mono- and di-saccharides compositions decreased largely within the initial 0.5 day (12 h) of ensiling. Sucrose disappeared rapidly within the initial 0.5 day of ensiling, but fructose and glucose contents showed an initial rise by the activity of enzymes in plant tissues, and then decreased gradually. On the other hand, the contents of monoand di-saccharides in guineagrass showed the largest decreases due mainly to plant respiration within the initial 0.5 day of ensiling, and no initial rises in fructose and glucose contents during the early stage of ensiling because of the absence of fructans which are hydrolyzed into fructose and glucose in temperate grasses. In both silages, the rate of reduction in mono- and di-saccharides compositions within the initial 5 days of ensiling was ranked in the order of glucose>fructose>sucrose, suggesting that glucose and fructose might be more favorably utilized than sucrose by microorganisms and glucose is the first fermentation substrate. It was concluded that the silage made from Italian ryegrass with high moisture content had a good fermentation quality owing to the dominance of lactic acid bacteria and active lactic acid fermentation during the initial stage of ensiling. These results can be explained by rapid plant sap liberation and the high activity of plant enzyme hydrolyzed fructans into fructose and glucose within the initial 2 days of ensiling, which stimulate the homofermentative lactic acid bacteria growth. In ensiling a temperate grass, the physical characteristics may ensure the rapid onset of fermentation phase, which results from the smaller losses of water-soluble carbohydrates during the initial stage of ensiling and providing sufficient water-soluble carbohydrates for lactic acid bacteria. The silage made from guineagrass with intermediate dry matter and high initial mono- and di-saccharides content was stable silage. This could be explained by the higher incorporation of air during the very early stage of ensiling and the restriction of cell breakdown and juice release due to the properties of a tropical grass with coarse porosity and stemmy structures. These physical characteristics delayed the onset of lactic acid bacteria fermentation phase by extending the phases of respiration and aerobic microorganisms activity, causing the higher loss of water-soluble carbohydrates and the shortage of lactic acid bacteria fermentation substrates.

Isolation of Isoflavones and Soyasaponins from the Germ of Soybean (콩 배아로 부터 Isoflavone과 Soyasaponin의 동시 분리)

  • Kim, Sun-Lim;Lee, Jae-Eun;Kim, Yul-Ho;Jung, Gun-Ho;Kim, Dea-Wook;Lee, Choon-Ki;Kim, Mi-Jung;Kim, Jung-Tae;Lee, Yu-Young;Hwang, Tae-Young;Lee, Kwang-Sik;Kim, Wook-Han;Kwon, Young-Up;Kim, Hong-Sig;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.149-160
    • /
    • 2013
  • The objective of present study was to simultaneously isolate of isoflavone and soyasaponin compounds from the germ of soybean seeds. Soy germ flours were defatted with hexane for 48h at room temperature, and methanolic extracts were prepared using reflux apparatus at $90^{\circ}C$ for 6h, two times. After extraction, extracts were separated with preparative RP-$C_{18}$ packing column ($125{\AA}$, $55-105{\mu}m$, $40{\times}150mm$), and collected 52 fractions were identified with TLC plate (Kieselgel 60 F-254) and HPLC, respectively. Among the identified isoflavone and soyasaponin fractions, isoflavone fractions were re-separated using a recycling HPLC with gel permeation column (Jaigel-W252, $20{\times}500mm$). Final fractions were air-dried, and the purified compounds of two isoflavones (ISF-1-1, ISF-1-2) and four soyasaponins (SAP-1, SAP-2, SAP-3, SAP-4) were obtained. Two isoflavone compounds (ISF-1-1, ISF-1-2) were acid-hydrolyzed for the identification of their aglycones, and confirmed by comparing with 12 types of isoflavone isomers. While the four kinds of soyasaponins were identified by using a micro Q-TOF mass spectrometer in the ESI positive mode with capillary voltage of 4.5kV, and dry temperature of $200^{\circ}C$. Base on the obtained results, it was conclude that ISF-1-1 is the mixture isomers of daidzin (43.4%), glycitin (47.0%), and genistin (9.6%), but ISF-1-2 is the single compound of genistin (99.8% <). On the other hand, soyasaponin SAP-1 is the mixture compounds of soyasaponin A-group (Aa, Ab, Ac, Ae, Af); SAP-2 is soyasaponin B-group (Ba, Bb, Bc) and E-group (Bd, Be); SAP-3 is soyasaponin B-group (Ba, Bb, Bc), E-group (Bd, Be), and DDMP-group (${\beta}g$); SAP-4 is soyasaponin B-group (Ba, Bb, Bc), E-group (Bd, Be), and DDMP-group (${\beta}g$, ${\beta}a$), respectively.

Formation Environment of Quaternary deposits and Palynology of Jangheung-ri Archaeological Site (Jiphyeon County, Jinju City), Korea (진주 집현 장흥리 유적 제4기 퇴적층 형성 및 식생환경 연구)

  • 김주용;박영철;양동윤;봉필윤;서영남;이윤수;김진관
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.2
    • /
    • pp.9-21
    • /
    • 2002
  • In Korea, many open-air upper palaeolithic sites are located at the river valley, particularly exposed in gently rotting terrain along the river course. They are situated at an altitude less trail 30 m above present river bottom, and covered with the blankets of slope deposits of several meters in thickness. The purpose of this research is to eluridate depositional and vegetational environment of the alluvial upper palaeolithic Jangheung-ri sites on the basis of analytical properties of grain size population, chronology, palynology, soil chemistry and clay mineralogy and magnetic susceptibility of the Jangheung-ri Quaternary formations. The lithostratograpy of Jangheung-ri sit is subdivided into 3 layers based on the depositional sequence and radiocarbon ages. From bottom to top, they are composed of slope deposits with lower paleosol layers, young fluvial sand and gravel with backswamp organic muds, and upper paleosol layers. The upper paleosol was formed under rather dry climatic condition between each flooding period. Dessication cracks were prevalent in the soil solum which was filled with secondarily minuted fragments due to pedogenetic process. The soil structure shows typical braided-typed cracks in the root part of cracking texture, and more diversified pattern of crackings downward. The young fluvial sand gravel were formed by rather perennial streams after LGM. The main part of organic muds was particularly formed after 15Ka. Local backswamp were flourished with organic muds and graded suspension materials in the flooding muds were intermittently accumulated in the organic muds until ca. 11Ka. This episode was associated with migration of Nam River toward present course. Organic muds were formed in backswamp or local pond. Abies/Picea-Betula with Ranunculaceae, Compositae, Cyperaceae were prevalent. This period is characterized with B$\Phi$lling, Older Dryas, Allerod, and Younger Dryas (MIS-1). Stone artefacts were found in the lower paleosol layers formed as old as 18Ka-22Ka. Based on the artefacts and landscape settings of the Jangheung-ri site, it is presumed that settlement grounds of old people were buried by frequent floodings of old Nam River, the river-beds of which were heavily fluctuated laterally and river-bed erosions were activated from south to north in Jangheung-ri site until the terminal of LGM9ca 17Ka).

  • PDF