• Title/Summary/Keyword: Drug transport study

Search Result 69, Processing Time 0.031 seconds

In vitro Transport of Fexofenadine.HCl in Deformable Liposomes Across the Human Nasal Epithelial Cell Monolayers

  • Lin, Hong-Xia;Lee, Chi-Ho;Shim, Chang-Koo;Chung, Suk-Jae;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.483-489
    • /
    • 2004
  • Fexofenadine HCl is non-sedating histamine H1 receptor antagonist that can be used for the treatment of seasonal allergic rhinitis. The objective of this study was to investigate whether the carriers of deformable liposomes can enhance the transepithelial permeability of fexofenadine HCl across the in vitro ALI human nasal monolayer model. Characterization of this model was achieved by bioelectric measurements and morphological studies. The passage 2 and 3 of cell monolayers exhibited the TEER value of $2852\;{\pm}\;482\;ohm\;{\times}\;cm^2$ on 11 days of seeding and maintained high TEER value for 5 days. The deformable liposome of fexofenadine HCl was prepared with phosphatidylcholine (PC) and cholic acid using extruder method. The mean particle size was about 200 nm and the maximum entrapment efficiency of 33.0% was obtained in the formulation of 1% PC and $100\;{\mu}g/ml$ fexofenadine HCl. The toxicity of the deformable liposome to human nasal monolayers was evaluated by MTT assay and TEER value change. MTT assay showed that it has no toxic effect on the nasal epithelial cells in 2-hour incubation when the PC concentration was below 1%. However, deformable liposome could not enhance the transepithelial permeability $(P_{app})$ and cellular uptake of fexofenadine HCl. In conclusion, the in vitro model could be used in nasal drug transport studies and evaluation of transepithelial permeability of formulations.

Kinesin-1-dependent transport of the βPIX/GIT complex in neuronal cells

  • Shin, Eun-Young;Lee, Chan-Soo;Kim, Han-Byeol;Park, Jin-Hee;Oh, Kwangseok;Lee, Gun-Wu;Cho, Eun-Yul;Kim, Hyong Kyu;Kim, Eung-Gook
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.380-385
    • /
    • 2021
  • Proper targeting of the βPAK-interacting exchange factor (βPIX)/G protein-coupled receptor kinase-interacting target protein (GIT) complex into distinct cellular compartments is essential for its diverse functions including neurite extension and synaptogenesis. However, the mechanism for translocation of this complex is still unknown. In the present study, we reported that the conventional kinesin, called kinesin-1, can transport the βPIX/GIT complex. Additionally, βPIX bind to KIF5A, a neuronal isoform of kinesin-1 heavy chain, but not KIF1 and KIF3. Mapping analysis revealed that the tail of KIF5s and LZ domain of βPIX were the respective binding domains. Silencing KIF5A or the expression of a variety of mutant forms of KIF5A inhibited βPIX targeting the neurite tips in PC12 cells. Furthermore, truncated mutants of βPIX without LZ domain did not interact with KIF5A, and were unable to target the neurite tips in PC12 cells. These results defined kinesin-1 as a motor protein of βPIX, and may provide new insights into βPIX/GIT complex-dependent neuronal pathophysiology.

Serum Deprivation Enhances Apoptotic Cell Death by Increasing Mitochondrial Enzyme Activity

  • Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Mitochondria are important sensor of apoptosis. $H_2O_2-induced$ cell death rate was enhanced by serum deprivation. In this study, we investigated whether serum deprivation using 0.5 or 3 % FBS induces apoptotic cell death through mitochondrial enzyme activation as compared to 10 % FBS. Apoptotic cell death was observed by chromosome condensation and the increase of sub-G0/G1 population. Serum deprivation reduced cell growth rate, which was confirmed by the decrease of S-phase population in cell cycle. Serum deprivation significantly increased caspase-9 activity and cytochrome c release from mitochondria into cytosol. Serum deprivation-induced mitochondrial changes were also indicated by the increase of ROS production and the activation of mitochondrial enzyme, succinate dehydrogenase. Mitochondrial enzyme activity increased by serum deprivation was reduced by the treatment with rotenone, mitochondrial electron transport inhibitor. In conclusion, serum deprivation induced mitochondrial apoptotic cell death through the elevation of mitochondrial changes such as ROS production, cytochrome c release and caspase-9 activation. It suggests that drug sensitivity could be enhanced by the increase of mitochondrial enzyme activity in serum-deprived condition.

Flow Analysis of Resin in an Extrusion Die for the Production of Medical Catheter Tubes (의료용 카테타 튜빙의 압출을 위한 다이내의 수지 흐름해석)

  • Lee, M.A.;Lyu, M.-Y.;Shin, D.J.;Kim, T.K.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.89-94
    • /
    • 2015
  • Medical catheter tubes are disposable devices that are inserted into the body cavities such as the pleura, trachea, esophagus, stomach, urinary bladder, ureter, or blood vessels for surgical procedures. Each hole of the inner tube is called a lumen, which is used as a passage for drug injections, waste discharge, polypus removal, blood transport, or injection of a camera or sensor. The catheter tube is manufactured by extrusion. The flow in the inner extrusion die affects the thickness and diameter of the tube. In the current study computer simulation of flow in an extrusion die for catheter tubing was performed. Velocity, pressure, shear rate, and shear stress were investigated and the die design was examined.

Electrotransport of Donepezil Hydrochloride from Poly(ethylene oxide) Hydrogel (폴리에틸렌옥사이드 하이드로겔을 이용한 도네페질염산염의 이온토포레시스 피부투과)

  • Choi, Yu-Ri;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • The objective of this work is to study transdermal delivery of donepezil hydrochloride (DH) using iontophoresis and to evaluate various factors which affect the transdermal transport. After the flux study using 4 kinds of hydrogel, hydrogel containing 8% poly(ethylene oxide) (PEO) was chosen as the hydrogel for further studies. Under experimental condition, DH was stable. We have studied the effect of polarity, current density, drug concentration and current profile on transdermal flux and compared the results. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. DH is positively charged at pH 7.4, and anodal delivery was much larger than cathodal and passive delivery at all current densities studied (0.2, 0.4 and 0.6 mA/$cm^2$). Cathodal delivery showed higher flux than passive flux. Flux increased as the concentration of DH in hydrogel increased. Pulsatile application of current showed smaller flux value than the application of continuous current. Based on these results, we have evaluated the possibility of delivering enough amount of DH to reach the therapeutic level. The maximum cumulative amount of DH transported for 12 hours was 455 ${\mu}g/cm^2{\cdot}hr$ when the amount of DH in the hydrogel was 3 mg/mL and the current density was 0.4 mA/$cm^2$. If the patch size is 10 $cm^2$, then we can deliver 4.6 mg for 12 hours. Because the daily dosage of DH is 5 mg, it seems possible to deliver clinically effective amount of DH using iontophoresis. This study also provides some information about the role of electrorepulsion and electroosmosis during the transport through skin.

Comparative Study of the Dissolution Profiles of a Commercial Theophylline Product after Storage

  • Negro, S.;Herrero-Vanrell, R.;Barcia, E.;Villegas, S.
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.568-571
    • /
    • 2001
  • The purpose of this work was to study the effect of storage time and temperature on the in vitro release kinetics of a commercial sustained-release dosage form of theophylline, at different pHs of the dissolution medium. The formulation was stored at $35^{\circ}C$ for 16 months and at $45^{\circ}C$ for 8 months, with a relative humidity of 60%. The in vitro release tests were performed at pHs 2, 4, 6 and 7.4. The mean values of the transport coefficient n, were close to 0.5 in all the conditions tested, which indicates that the transport system is not modified after storage of the formulation at $35^{\circ}C$ and $45^{\circ}C$. The mean values of the dissolution rate constant ranged from 0.036 to 0.043 $min^{-n}$, under all the conditions tested. Significant differences (${\alpha}=0.05$) were found between pHs 2, 4 and 6, 7.4 for all the model-independent parameters studied. When the formulation was kept at $35^{\circ}C$ for 16 months, the mean percentage of drug dissolved at 8 hours was 25.61% (pHs 2, 4) and, 36.12% (pHs 6, 7.4), representing a 26% and 24% reduction, respectively. Simitar results were obtained after storing the formulation at $45^{\circ}C$ for 8 months, corresponding to 33.3% (pHs 2, 4) and, 22.5% (pHs 6, 7.4) diminution, respectively. The values of the similarity factory $f_2$, obtained were lower than 50, which indicates the lack of similarity among the dissolution profiles, after storing the formulation under the experimental Conditions tested.

  • PDF

Comparison of Gastrointestinal Permeability of Caffeine, Propranolol, Atenolol, Ofloxacin, and Quinidine Measured Using Ussing Chamber System and Caco-2 Cell Monolayer

  • Song, Im-Sook;Choi, Young A;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • v.8 no.2
    • /
    • pp.34-38
    • /
    • 2017
  • The purpose of this study was to develop a cocktail approach for the measurement of the permeability of marker compounds, caffeine and propranolol (high permeability), ofloxacin (intermediate), atenolol (low), and quinidine (P-glycoprotein substrate), simultaneously. Then we compared the permeability in Caco-2 cells with that in rat intestinal segments. The difference between individual measurement and cocktail approach was less than 20 %, and the permeabilities of these compounds were similar to those previously reported, suggesting that the cocktail transport study and simultaneous drug analysis were successfully developed and validated in this study. Additionally, in the application of this cocktail method, the permeability of five drugs in rat jejunum was similar to that in ileum but different from that in colon, which was measured using the Ussing chamber system. Moreover, permeability in jejunum and ileum was similar to that in Caco-2 cells. In conclusion, the permeability in Caco-2 cells was equivalent to the permeability in rat jejunum and ileum determined with the Ussing system. Therefore, this newly developed cocktail assay and its application to the Ussing system can be a useful tool for robust and rapid screening for site-specific permeability in rat intestine, thus accelerating the prediction of absorption of new chemical entities.

Monitoring of Aflatoxins on Commercial Herbal Medicines (유통생약의 아플라톡신 모니터링)

  • Park, Seung-Young;Moon, Hyun-Ju;Cho, Soo-Yeul;Lee, Jun-Gu;Lee, Hwa-Mi;Song, Ji-Young;Cho, Ok-Sun;Cho, Dae-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.315-321
    • /
    • 2011
  • This study was performed to investigate contamination levels of aflatoxins, the secondary metabolites produced by fungi Aspergillus flavus and A. parasiticus, in herbal medicine. Herbs is susceptible to these fungi infections through its growth harvest, transport and storage. This study determine the aflatoxin $B_1$, $B_2$, $G_1$ and $G_2$ levels by HPLC-florescence detector coupled with photochemical enhancement in 558 samples herbal medicine distributed in Korea and China. Also, We checked a transfer ratio of aflatoxins from raw herbal medicines to herbal medicine extract. Hot water extraction of herbal medicines was prepared by air pressure and high pressure condition. The analytical method for aflatoxins was validated in this method. In results recoveries of the analytical method were ranged from 67.4% to 96.2% and, limits of detection and quantitation for aflatoxins were $0.015{\sim}0.138\;{\mu}g/kg$ and $0.046{\sim}0.418\;{\mu}g/kg$, respectively. According to the results of monitoring on aflatoxins in herbal medicine, aflatoxins 1.7 ug/kg $B_1$ and 0.9 ug/kg $G_1$ were detected in only one sample of Strychni Ignatii Semen, and 0.8 ug/kg $G_1$ in Strychni Semen. About 13.6~51.3% of aflatoxins were transferred to hot water extract. Although the detected levels are under the permitted levels for aflatoxins in herbal medicine, these amounts should be considered in regard to overall daily exposure to mycotoxins.

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

Effect of Juglans sinensis Dode aquacupuncture(JS) on t-butylhydroperoxide-induced alterations in membrane transport function in renal epithelial cells (신장상피세포(腎臟上皮細胞)에서 호도약침액(胡桃藥鍼液)이 t-Butylhydroperoxide에 의한 세포막물질이동계(細胞膜物質移動系)의 장애(障碍)에 미치는 영향(影響))

  • Narm, Sang-pil;Cho, Tai-sung;Kim, Cheol-hong;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-ho;Ahn, Chang-beohm
    • Journal of Acupuncture Research
    • /
    • v.20 no.6
    • /
    • pp.128-139
    • /
    • 2003
  • Juglans sinensis Dode has been reported to have antioxidant activity. However, the effect of Juglans sinensis Dode aquacupuncture(JS) on reactive oxygen species(ROS)-induced alterations in membrane transport function in renal tubular cells. This study was performed to evaluate the effect of JS on the organic hydroperoxide t-butylhydroperoxide(tBHP)-induced inhibition of $Na^+$-dependent phosphate($Na^+$-Pi) uptake in opossum kidney (OK) cells, an established renal proximal epithelial cell line. tBHP inhibited $Na^+$-Pi uptake in a time-dependent manner. The inhibitory effect of tBHP was prevented by JS over concentration range of 0.05-1mg/100ml in a dose-dependent manner. Kinetic studies showed that tBHP caused an decrease in Vmax for $Na^+$-Pi uptake without any a significant change in Km. $Na^+$-dependent phosphonoformic acid binding, a irreversible inhibitor of renal $Na^+$-Pi uptake, was decreased by tBHP treatment. The reduction in Vmax and phosphonoformic acid binding by tBHP was prevented by JS. tBHP induced lipid peroxidation and its effect was completely inhibited by JS and antioxidant N,N'-diphenyl-p-phenylenediamine. These data suggest that the oxidant inhibits phosphate uptake by a reduction in the number of active carrier across the membrane. JS may prevent oxidant-induced inhibition of membrane transport function by a mechanism similar to antioxidants in renal epithelial cells. Although the precise constituents remain to be explored, JS may be employed as a useful candidate herb for drug development to prevent and treat oxidant-mediated renal failure.

  • PDF