• Title/Summary/Keyword: Drought-stress

Search Result 477, Processing Time 0.023 seconds

Enhancement of Drought-Stress Tolerance of Brassica oleracea var. italica L. by Newly Isolated Variovorax sp. YNA59

  • Kim, Yu-Na;Khan, Muhammad Aaqil;Kang, Sang-Mo;Hamayun, Muhammad;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1500-1509
    • /
    • 2020
  • Drought is a major abiotic factor and has drastically reduced crop yield globally, thus damaging the agricultural industry. Drought stress decreases crop productivity by negatively affecting crop morphological, physiological, and biochemical factors. The use of drought tolerant bacteria improves agricultural productivity by counteracting the negative effects of drought stress on crops. In this study, we isolated bacteria from the rhizosphere of broccoli field located in Daehaw-myeon, Republic of Korea. Sixty bacterial isolates were screened for their growth-promoting capacity, in vitro abscisic acid (ABA), and sugar production activities. Among these, bacterial isolates YNA59 was selected based on their plant growth-promoting bacteria traits, ABA, and sugar production activities. Isolate YNA59 highly tolerated oxidative stress, including hydrogen peroxide (H2O2) and produces superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities in the culture broth. YNA59 treatment on broccoli significantly enhanced plant growth attributes, chlorophyll content, and moisture content under drought stress conditions. Under drought stress, the endogenous levels of ABA, jasmonic acid (JA), and salicylic acid (SA) increased; however, inoculation of YNA59 markedly reduced ABA (877 ± 22 ng/g) and JA (169.36 ± 20.74 ng/g) content, while it enhanced SA levels (176.55 ± 9.58 ng/g). Antioxidant analysis showed that the bacterial isolate YNA59 inoculated into broccoli plants contained significantly higher levels of SOD, CAT, and APX, with a decrease in GPX levels. The bacterial isolate YNA59 was therefore identified as Variovorax sp. YNA59. Our current findings suggest that newly isolated drought tolerant rhizospheric Variovorax sp. YNA59 is a useful stress-evading rhizobacterium that improved drought-stress tolerance of broccoli and could be used as a bio-fertilizer under drought conditions.

Photochemical assessment of maize (Zea mays L.) seedlings grown under water stress using photophenomics technique

  • Ham, Hyun Don;Kim, Tea Seong;Yoo, Sung Yung;Park, Ki Bae;Kim, Tae Wan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.341-341
    • /
    • 2017
  • Abiotic stress adversely affects crop growth worldwide. Drought of the major abiotic stresses have the most significant impact on all of the crop. The main objective of this study was to assess the effects of drought stress on photochemical performance and vitality of maize (Zea mays L.). The photochemical characteristics were analyzed in the context of period of drought stress during the maize growth. Drought experiment was carried out for four weeks, thereafter, the drought treated maize was re-watered. The polyphasic OJIP fluorescence transient was used to evaluate the behavior of photosystem II (PSII) and photosystem I (PSI) during the entire experiment period. In drought stress, the performance Index (PI) level was reached earlier when compared to the controls. For the screening of drought stress tolerance the drought factor index (DFI) of each variety was calculated as follow DFI= log(A) + 2log(B). All the fourteen cultivars show DFI ranged from -0.69 to 0.30, meaning less useful in selection of drought tolerant cultivars. PI and electron transport flux values of fourteen cultivars were to indicate reduction of photosynthetic performance during the early vegetative stage under drought stress. In conclusion, DFI and energy flux parameters can be used as photochemical and physiological index.

  • PDF

Cloning, Characterization, and Functional Analysis of Maize DEHYDRIN2

  • Paek, Nam-Chon;Jung, Hun-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.2
    • /
    • pp.116-122
    • /
    • 2002
  • Dehydrins (LEA Dll proteins) are one of the typical families of plant proteins that accumulate in response to dehydration, cold stress, abscisic acid, or during seed maturation. A 1.3-kb cDNA was cloned from a cDNA expression library of 5-day-old germinating maize scutellums under drought stress. The deduced protein sequence indicated a dehydrin gene encoding SK$_3$ LEA protein typically expressed during cold acclimation, but not by drought stress in barley and wheat. Thus, it was named maize DEHYDRIN2 (ZmDhn2). It accumulates rapidly and highly in drought-stressed scutellum and leaf tissues at any stage, but not under cold stress. ZmDhn2 gene was transformed into Arabidopsis thaliana for functional analysis under drought condition. From electrolyte leakage test, no significant difference showed between wild type and transformants under normal growth condition, but the leakage level of electrolyte in wild type plants was about 3 times as high as that in the transformed plants under drought stress. It suggests that ZmDHN2 playa role in increasing drought tolerance.

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

Identification of Drought Tolerant Genotypes by Evaluating Morpho-physiological Traits in Pepper

  • Kyu Kyu Thin;Alebel Mekuriaw;Hyerim Do;Inhwa Yeam;Je Min Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.29-29
    • /
    • 2022
  • The fast-changing climatic conditions make plants to be vulnerable to many abiotic stresses. Drought stress is one of the limiting factors that affect pepper production in water deficient regions. It affects plant growth and development by altering physiological, morphological, and metabolic processes. Breeding drought tolerant varieties is one of the mitigation strategies to overcome the ever increasing drought disaster. Hence, screening of new drought tolerant pepper genotypes is essential. The current study was aimed to identify new drought tolerant genotypes among the collection of pepper genetic resources. In total, 70 pepper genotypes were screened for drought tolerance after exposure to drought stress condition. The pepper genotypes were classified as highly tolerant, intermediate, or severely sensitive to drought stress based on the phenotypic analysis. Consequently, 13 genotypes significantly exhibited higher recovery rate after drought stress and were classified as highly tolerant. Comparative analysis of morphological and physiological parameters and expression of drought responsive genes between tolerant and susceptible pepper genotypes will be presented and discussed. The identified tolerant genotypes will be useful resources for breeding drought tolerant pepper cultivars.

  • PDF

Arabidopsis Transcription Factor ANAC032 Enhances Salinity and Drought Tolerance

  • Netty Ermawati;Sang Gon Kim;Joon-Yung Cha;Daeyoung Son
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.42-49
    • /
    • 2023
  • The plant-specific NAC transcription factors control various biological processes, including plant development and stress responses. We have isolated an ANAC032 gene, one of the NAC transcription factor family, which was highly activated by multi-abiotic stresses, including high salt and drought in Arabidopsis. Here, we generated transgenic plants constitutively expressing ANAC032 and its knockout to identify the functional roles of ANAC032 in Arabidopsis under abiotic stress responses. The ANAC032-overexpressing plants showed enhanced tolerance to salinity and drought stresses. The anac032 knockout mutants were observed no significant changes under the high salt and drought conditions. We also monitored the expression of high salt and drought stress-responsive genes in the ANAC032 transgenic plants and anac032 mutant. The ANAC032 overexpression upregulated the expression of stress-responsive genes, RD29A and ERD10, under the stresses. Thus, our data identify that transcription factor ANAC032 plays as an enhancer for salinity and drought tolerance through the upregulation of stress-responsive genes and provides useful genetic traits for generating multi-abiotic stress-tolerant forage crops.

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

A Co-expression Network of Drought Stress-related Genes in Chinese Cabbage

  • Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.243-251
    • /
    • 2017
  • Plants have evolved to adapt to abiotic stresses, such as salt, cold, and drought stress. In this study, we conducted an in-depth analysis of drought resistance mechanisms by constructing a gene co-expression network in Chinese cabbage (Brassica rapa ssp. pekinensis L.). This drought stress co-expression network has 1,560 nodes, 4,731 edges, and 79 connected components. Based on genes that showed significant co-expression in the network, drought tolerance was associated with the induction of reactive oxygen species removal by raffinose family oligosaccharides and inositol metabolism. This network could be a useful tool for predicting the functions of genes involved in drought stress resistance in Chinese cabbage.

Differential Responses of Antioxidant Enzymes on Chilling and Drought Stress in Tomato Seedlings (Lycopersicon esculentum L.) (토마토 유묘에 있어서 저온과 수분 스트레스에 대한 항산화효소의 활성 차이)

  • Kang, Nam-Jun;Cho, Myeong-Whan;Rhee, Han-Chul;Choi, Young-Hah;Um, Yeong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2007
  • Responses of antioxidant enzymes on chilling and drought stress in tomato seedlings were investigated. Growing patterns of tomato based on fresh weight of tomato seedlings were severely affected by chilling and drought stress. Fresh weight of tomato seedlings were reduced by 69.5% in chilling stress and 50.6% in drought stress compared to those in the unstressed control seedlings after 12 days of stress. The specific and gel activity of SOD and POD in the leaves, shoots, and roots of tomato seedlings were significantly increased by chilling and drought stress. Activation of SOD and POD activity by chilling stress were higher in the roots than those of drought stress. However, activation of SOD and POD activity by drought stress were higher in the leaves and shoots than those of chilling stress. The specific and gel activity of GR in the leaves, shoots, and roots of tomato seedlings were also significantly increased by chilling and drought stress. When the seedlings were treated with chilling or drought stress, one GR isozyme band (GR-3) was newly expressed in the leaves of tomato seedlings. The specific and gel activity of PPO was significantly increased in the roots and shoots of tomato seedlings by chilling and drought stress, respectively. However, the specific and gel activity of PPO in the leaves is no difference between stressed and controlled tomato seedlings.

Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea (Evaporative Stress Index (ESI)를 활용한 북한의 위성영상기반 농업가뭄 평가)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Dae-Eui;Svoboda, Mark D.;Tadesse, Tsegaye;Wardlow, Brian D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • North Korea has frequently suffered from extreme agricultural crop droughts, which have led to food shortages, according to the Food and Agriculture Organization (FAO). The increasing frequency of extreme droughts, due to global warming and climate change, has increased the importance of enhancing the national capacity for drought management. Historically, a meteorological drought index based on data collected from weather stations has been widely used. But it has limitations in terms of the distribution of weather stations and the spatial pattern of drought impacts. Satellite-based data can be obtained with the same accuracy and at regular intervals, and is useful for long-term change analysis and environmental monitoring and wide area access in time and space. The Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used to detect drought response as a index of the droughts occurring rapidly over short periods of time. It is more accurate and provides faster analysis of drought conditions compared to the Standardized Precipitation Index (SPI), and the Palmer Drought Severity Index (PDSI). In this study, we analyze drought events during 2015-2017 in North Korea using the ESI satellite-based drought index to determine drought response by comparing with it with the SPI and SPEI drought indices.