Differential Responses of Antioxidant Enzymes on Chilling and Drought Stress in Tomato Seedlings (Lycopersicon esculentum L.)

토마토 유묘에 있어서 저온과 수분 스트레스에 대한 항산화효소의 활성 차이

  • 강남준 (원예연구소 시설원예시험장) ;
  • 조명환 (원예연구소 시설원예시험장) ;
  • 이한철 (원예연구소 시설원예시험장) ;
  • 최영하 (원예연구소 시설원예시험장) ;
  • 엄영철 (원예연구소 시설원예시험장)
  • Published : 2007.06.30

Abstract

Responses of antioxidant enzymes on chilling and drought stress in tomato seedlings were investigated. Growing patterns of tomato based on fresh weight of tomato seedlings were severely affected by chilling and drought stress. Fresh weight of tomato seedlings were reduced by 69.5% in chilling stress and 50.6% in drought stress compared to those in the unstressed control seedlings after 12 days of stress. The specific and gel activity of SOD and POD in the leaves, shoots, and roots of tomato seedlings were significantly increased by chilling and drought stress. Activation of SOD and POD activity by chilling stress were higher in the roots than those of drought stress. However, activation of SOD and POD activity by drought stress were higher in the leaves and shoots than those of chilling stress. The specific and gel activity of GR in the leaves, shoots, and roots of tomato seedlings were also significantly increased by chilling and drought stress. When the seedlings were treated with chilling or drought stress, one GR isozyme band (GR-3) was newly expressed in the leaves of tomato seedlings. The specific and gel activity of PPO was significantly increased in the roots and shoots of tomato seedlings by chilling and drought stress, respectively. However, the specific and gel activity of PPO in the leaves is no difference between stressed and controlled tomato seedlings.

저온 또는 건조 처리에 따른 토마토 유묘의 생육과 부위별 항산화효소의 반응 양상을 분석한 결과, 토마토 유묘의 생체중은 처리 후 12일째에 대조구에 비해 각각 69.5% 와 50.6% 감소하였다. SOD와 POD의 활성은 대조구에 비해 저온 또는 건조 처리에서 높은 활성을 보였는데, 저온 처리시에는 뿌리에서 더 높은 활성을 보였고 건조 처리에서는 잎과 줄기에서 높은 활성을 보였다. 이러한 결과는 동위효소의 발현양상에서도 일치하였다. GR의 활성은 저온 또는 건조 처리시 대조구보다 높은 활성을 보였는데, 잎과 줄기에서는 저온과 건조 처리간의 차이는 없었지만, 뿌리에서는 건조 처리가 높은 경향을 보였다. GR 동위효소 발현양상은 저온과 건조처리시에는 GR-3 밴드가 잎에서는 발현되어 대조구와 차이가 있었지만, 줄기와 뿌리에서는 큰 차이가 없었다. PPO 활성은 잎에서는 모든 처리에서 차이가 없었지만, 줄기와 뿌리에서는 저온 또는 건조 처리에서 대조구보다 높은 경향을 보였다. 특히 줄기의 PPO 활성은 저온 처리보다 건조처리에서 높았고 뿌리의 PPO 활성은 건조 처리보다 저온 처리에서 높았다. 동위효소의 발현양상에서도 건조처리에서는 줄기에서, 저온 처리에서는 뿌리에서 높은 밀도를 보여 불량 환경에 따른 부위별 반응 차이를 잘 반영해 주었다.

Keywords

References

  1. Anderson, M.D., T.K. Prasad, and C.R. Stewart. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109: 1247-1257 https://doi.org/10.1104/pp.109.4.1247
  2. Asada, K. 1992. Ascorbate peroxidase: A hydrogne peroxide-scavenging enzyme in plants. Physiol. Plant. 85:235-241 https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  3. Asada, K. 1999. The water-water cycle in chloroplasts. Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  4. Asada, K., M. Takahashi, and M. Nagate. 1974. Assay and inhibitors of spinach superoxide dismutase. Agr. Biol. Chem. 38:471-473 https://doi.org/10.1271/bbb1961.38.471
  5. Bannister, J.V., W.H. Bannister, and G. Rotilio. 1987. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22: 111-180 https://doi.org/10.3109/10409238709083738
  6. Beyer, W.F. and I. Fridovich. 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 161:559-566 https://doi.org/10.1016/0003-2697(87)90489-1
  7. Bowler, C., M. Van Montagu, and D. Inze. 1992. Superoxide dismutases and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  8. Bowler, C., W. Van Camp, M. Van Montagu, and D. Inze. 1994. Superoxide dismutase in plants. CRC Crit. Rev. Plant Sci. 13:199-218 https://doi.org/10.1080/07352689409701914
  9. Bradford, M.M. 1976. A rapid and sensitive method for the quantitization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  10. Bridges, S.M. and M.L. Salin. 1981. Distribution of iron-containing superoxide dismutase in vascular plants. Plant Physiol. 68:275-278 https://doi.org/10.1104/pp.68.2.275
  11. Chen, G.X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:987-998
  12. Davies, K.J.A. 1995. Oxidative stress: The paradox of aerobic life, pp. 1-32. In: C. Rice-Evans, B. Halliwell, and G.G. Lunt (eds.). Free radicals and oxidative stress: Environment, drugs, and food additives. Biochem. Soc. Symp. 61, Portlant Press, London, UK
  13. Edwards E.A, C. Enard, G.P. Creissen, and K.J. Mullineaux. 1994. Synthesis and properties of glutathione reductase in stressed peas. Planta. 192:137-143
  14. Elstner, E.F. 1987. Metabolism of activated oxygen species, pp. 253-315. In: D.D. Davies (ed.). Biochemistry of metabolism: The biochemistry of plants. Vol. II. Academic Press, New York, NY, USA
  15. Foyer, C.F. 1993. Ascorbic acid, pp. 31-58. In: R.G. Alscher and J.L. Hess (eds.). Antioxidants in higher plants, CRC Press, Boca Raton, FL, USA
  16. Foyer, C.F., M. Lelandais, C. Galap, and K.J. Kunert. 1991. Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97:863-872 https://doi.org/10.1104/pp.97.3.863
  17. Graham, D. and B.D. Patterson. 1982. Responses of plants to low non-freezing temperatures: Proteins, metabolism, and acclimation. Annu. Rev. Plant Physiol. 33:347-372 https://doi.org/10.1146/annurev.pp.33.060182.002023
  18. Gupta, A.S., J.L. Heinen, A.S. Holaday, J.J. Burke., and R.D. Allen. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 90:1629-1633
  19. Hauslanden, A. and R.G. Alscher. 1993. Glutathione, In: R.G. Alscher and J.L. Hess. Eds, Antioxidants in higher plants. CRC Press, London. pp. 1-30
  20. Heath, R.L. 1987. The biochemistry of ozone attack on the plasma membrane of plant cells. Adv. Phytochem. 21:29-54
  21. Horemans, N., C.H. Foyer, G. Potters, and H. Asard. 2000. Ascorbate function and associated transport systems in plants. Plant Physiol. Biochem. 38:531-540 https://doi.org/10.1016/S0981-9428(00)00782-8
  22. Kang, K.S., C.J. Lim, T.J. Han, J.C. Kim, and C.D. Jin. 1998. Activation of ascorbate-glutathione cycle in Arabidopsis leaves in responses to aminotriazol. J. Plant Biol. 41:155-161 https://doi.org/10.1007/BF03030248
  23. Kendall, E.J. and B.D. MeKersie. 1989. Free radical and freezing injury to cell membranes of winter wheat. Physiol. Plant. 76:86-94 https://doi.org/10.1111/j.1399-3054.1989.tb05457.x
  24. Lee, D.H. and C.B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: In gel enzyme activity assays. Plant Sci. 159:75-85 https://doi.org/10.1016/S0168-9452(00)00326-5
  25. Longa, M.A., L.A. del Rio, and J.M. Palma. 1994. Superoxide dismutase of chestnut leaves, Castanea sativa: Characterization and study of their involvement in natural leaf senescence. Physiol. Plant. 92: 227-232 https://doi.org/10.1111/j.1399-3054.1994.tb05330.x
  26. Mayer, A.M. 1987. Polyphenol oxidase in plants-recent progress. Phytochemistry. 26:11-20 https://doi.org/10.1016/S0031-9422(00)81472-7
  27. McKersie, B.D., Y.R. Chen, M. de Beus, S.R. Bowler, D. Inze, K. Halluin, and J. Botterman. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 103:1155-1163 https://doi.org/10.1104/pp.103.4.1155
  28. Mohammadi, M. and H. Kazemi. 2002. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 162:491-498 https://doi.org/10.1016/S0168-9452(01)00538-6
  29. Monk, L.S., K.Y. Fagerstedt, and R.M.M. Crawford. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant 76: 456-459 https://doi.org/10.1111/j.1399-3054.1989.tb06219.x
  30. Olson, P.D. and J.E. Varner. 1993. Hydrogen peroxide and lignification. Plant J. 4:887-892 https://doi.org/10.1046/j.1365-313X.1993.04050887.x
  31. Putter, J. 1974. Peroxidases, pp. 685-690. In: H.U. Bergmeyer (Ed.). Methods of enzymatic analysis 2. Academic Press, NY, USA
  32. Rao, M.V., G. Paliyath, and D.P. Ormrod. 1996. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110: 125-136 https://doi.org/10.1104/pp.110.1.125
  33. Salin, M.L. 1991. Chloroplast and mitochondrial mechanism for protection against oxygen toxicity. Free Radic. Res. Commun. 12-13:851-858
  34. Shen, W., K. Nada, and S. Tachibana. 1999. Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber cultivars. J. Japan. Soc. Hort. Sci. 68:967-973 https://doi.org/10.2503/jjshs.68.967
  35. Sommer, A., E. Neeman, J.C. Steffens, A.M. Mayer, and E. Harel. 1994. Import, targeting and processing of a plant polyphenol oxidase. Plant Physiol. 105:1301-1311 https://doi.org/10.1104/pp.105.4.1301
  36. Thipyapong, P., J. Melkonian, D.W. Wolfe, and J.C. Steffens. 2004. Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci. 167: 693-703 https://doi.org/10.1016/j.plantsci.2004.04.008
  37. Walker, M.A. and B.D. McKersie. 1993. Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141:234-239 https://doi.org/10.1016/S0176-1617(11)80766-2
  38. Wang, C.Y. 1996. Temperature preconditioning affects ascorbate antioxidant system in chilled zucchini squash. Postharvest Biol. Technol. 8:29-36 https://doi.org/10.1016/0925-5214(95)00061-5