• Title/Summary/Keyword: Drought tolerant plants

Search Result 46, Processing Time 0.027 seconds

Identification of Drought Tolerant Genotypes by Evaluating Morpho-physiological Traits in Pepper

  • Kyu Kyu Thin;Alebel Mekuriaw;Hyerim Do;Inhwa Yeam;Je Min Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.29-29
    • /
    • 2022
  • The fast-changing climatic conditions make plants to be vulnerable to many abiotic stresses. Drought stress is one of the limiting factors that affect pepper production in water deficient regions. It affects plant growth and development by altering physiological, morphological, and metabolic processes. Breeding drought tolerant varieties is one of the mitigation strategies to overcome the ever increasing drought disaster. Hence, screening of new drought tolerant pepper genotypes is essential. The current study was aimed to identify new drought tolerant genotypes among the collection of pepper genetic resources. In total, 70 pepper genotypes were screened for drought tolerance after exposure to drought stress condition. The pepper genotypes were classified as highly tolerant, intermediate, or severely sensitive to drought stress based on the phenotypic analysis. Consequently, 13 genotypes significantly exhibited higher recovery rate after drought stress and were classified as highly tolerant. Comparative analysis of morphological and physiological parameters and expression of drought responsive genes between tolerant and susceptible pepper genotypes will be presented and discussed. The identified tolerant genotypes will be useful resources for breeding drought tolerant pepper cultivars.

  • PDF

Cross-Tolerance and Responses of Antioxidative Enzymes of Rice to Various Environmental Stresse

  • Kuk, Yong-In;Shin, Ji-San
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.264-273
    • /
    • 2007
  • In order to examine the cross-tolerance of two chilling-tolerant cultivars (Donganbyeo and Heukhyangbyeo) and two chilling-susceptible cultivars (Hyangmibyeo and Taekbaekbyeo) to salt, paraquat, and drought, changes of physiological response and antioxidant enzymes were investigated. The seedlings were grown in a growth chamber until the 4-leaf stage. The seedlings were exposed to chilling at $5^{\circ}C$ for 3 days. For drought treatment, the seedlings were subjected to drought by withholding water from plants for 5 days. For paraquat study, plants were sprayed with $300{\mu}M$ paraquat. For the salt stress, the seedlings were transferred to the Hoagland's nutrient solution containing 0.6% (w/v) NaCl for 4 days. Chilling-tolerant cultivars showed cross-tolerant to other stresses, salt, paraquat, and drought in physiological parameters, such as leaf injury, chlorophyll a fluorescence, and lipid peroxidation. The baseline levels of antioxidative enzyme activities, catalase (CAT) and peroxidase (POX) activities in chilling-tolerant cultivars were higher than in the chilling-susceptible cultivars. However, there were no differences in ascorbate peroxidase (APX) and glutathione reductase (GR) activities between chilling-tolerant and -susceptible cultivars in untreated control. CAT activity in chilling-tolerant cultivars was higher than that in chilling-susceptible cultivars during chilling, salt, and drought treatments, but not during paraquat treatment. However, other antioxidative enzymes, APX, POX, and GR activities showed no significant differences between chilling-tolerant and -susceptible cultivars during chilling, salt, paraquat, and drought treatments. Thus, it was assumed that CAT contribute to cross-tolerance mechanism of chilling, salt, and drought in rice plants.

Compare of Agriculture Character of Drought-Tolerant GM in Large GM Field (대규모 GM 포장에서 내건성 GM 벼의 농업적 특성 비교)

  • Lee, Hyun-Suk;Kim, Kyung-Min
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.124-130
    • /
    • 2013
  • The significance of environment change and genetic safety has been recently recognized by many genetically modified (GM) plants. This study was to evaluate the safety of drought-tolerant rice and to identify the environment variance. The GM rice of drought-tolerant rice and four check cultivars were analyzed the data on agronomic characters and principal component in large-GM crop field. There was no significant difference in agronomic characters between the drought-tolerant rice and donor plant, 'Ilmi'. Grain yield showed the standard deviation of the difference, did not significant statistically. Related to grain characters, grain appearance were similar to the drought-tolerant rice and donor plant, 'Ilmi'. In Chemical characters, brown rice of the drought-tolerant rice and a donor plant, 'Ilmi' did difference in starch and protein, however, was similar as 'Ilpum'. These results indicated that drought-tolerant rice may perform to detect genetic safety in GM plants progeny.

  • PDF

Screening methods for drought and salinity tolerance with transgenic rice seedlings

  • Song, Jae-Young;Song, Seon-Kyeong;Yu, Dal-A;Kim, Me-Sun;Kang, Kwon Kyoo;Cho, Yong-Gu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.165-165
    • /
    • 2017
  • Abiotic stress is one of the major serious limiting factors in rice (Oryza sativa) and caused rice production losses. It is important to precisely screen valuable genetic resources for improving stress tolerance and understanding tolerance mechanism to abiotic stresses. Because there are differences of experiment designs for screening of tolerant plant in several studies related to abiotic stress, this study has performed to provide the rapid and efficiency screening method for selection of tolerance rice to drought and salinity stresses. Two week-old rice seedlings that reached about three leaf stage were treated with drought and salinity stresses and examined tolerant levels with tolerant and susceptible control varieties, and transgenic plants. To determine the optimum concentration for the selection of drought and salinity condition, tolerant, susceptible and wild-type plants were grown under three soil moisture contents (5, 10 and 20% water contents) and three NaCl concentrations (100, 200 and 250 mM) for 10 days at seedling stage. 200 mM NaCl concentration and 5% moisture content soil were determined as the optimum conditions, respectively. The described methodologies in this study are simple and efficiency and might help the selection of drought and salinity tolerance plants at the 3,4-leaf-seedling stage.

  • PDF

Efficient Selection Method for Drought Tolerant Plants Using Osmotic Agents

  • Park, Dong-Jin;Im, Hyeon-Jeong;Jeong, Mi-Jin;Song, Hyeon-Jin;Kim, Hak-Gon;Suh, Gang-Uk;Ghimire, Balkrishna;Choi, Myung-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.224-234
    • /
    • 2018
  • An efficient method to select drought tolerant Korean native plants using in vitro culture system was established in this study. While the plant growths and root inductions of each plant were proportionately affected by concentrations of mannitol on in vitro culturing seven plant species to test tolerance to osmotic stress, growth index (GI) and number of root induction of Chrysanthemi zawadskii var. latilobum and Dianthus chinensis var. semperflorens plantlets were higher than the others in 125mM mannitol. In test with polyethylene glycol (PEG), plantlets of C. zawadskii var. latilobum and D. chinensis var. semperflorens showed higher GI and number of root induction than the others in 33.3mM. On testing whether the well grown plants under osmotic stress are tolerant to virtual drought stress, there were significant differences in the withering rates of C. zawadskii var. latilobum and D. chinensis and those of were Aster yomena and Centaurea cyanus after 12 days without watering. It was found that significantly lower stomata numbers were shown in both drought tolerant plants than the sensitive plants. Averages of the stomata circumferences and the stomata area in the plantlets of the tolerant species were larger than those of the sensitive plants D. chinensis var. semperflorens showed the lowest transpiration level per unit area. The highest stomatal area per unit area was found in C. zawadskii, followed by D. chinensis var. semperflorens, Aster yomena and C. cyanus. In conclusion, C. zawadskii var. latilobum and D. chinensis var. semperflorens were more tolerant to drought than other two species. Furthermore in vitro selection was successfully used to screen drought tolerance species of native plant species.

Selection of Drought Tolerant Plants by Drought the Physiological Characteristics and Biochemicals Material about the Compositae Plants (건조 생리특성 및 생화학적 물질을 인자로 한 국화과 식물의 내건성 식물 선발)

  • Yang, Woo Hyeong;Im, Hyeon Jeong;Park, DongJin;Kim, Hak Gon;Yong, Seong Hyeon;Kang, Seung Mi;Ma, Ho Seop;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.51-60
    • /
    • 2016
  • This study was selected drought tolerant plants, by observing the physiological characteristics and biochemical materials from the 9 kinds of the Compositae plants. After selecting plants of the similar size, and then drought stress was induced by the irrigation stopping. Survival rates, chlorophyll values, relative water content(RWC), excised-leaf water loss(ELWL), proline, reducing sugar were measured after 30 days of stopping irrigation. The species that had high rates of survival were Ainsliaea acerifolia Sch. Bip, Aster koraiensis, Aster scaber, Dendranthema zawadskii(S), however other 5 species were dead. The remaining factors have been determined based on plant species showed a higher survival rate. However, chlorophyll content showed high values in A. acerifolia, A.altaicus var. uchiyamae, A. koraiensis, and will have been determined that has no correlation with survival rates, except for A. acerifolia and A. koraiensis. On the other hand, A. scaber, A. acerifolia, A. koraiensis were determined to be relatively high drought tolerant plants in RWC, ELWL, proline, reducing sugar, it showed a similar correlation with survival rate. As a result of 9 kinds of the Compositae plants A. scaber, A. acerifolia, A. koraiensis were considered relatively higher drought tolerant plants.

Selection Indices to Identify Drought-tolerance and Growth Characteristics of the Selected Korean Native Plants (자생식물로부터 내건성 식물의 최적인자 선발과 생육특성)

  • Im, Hyeon Jeong;Song, Hyeon Jin;Jeong, Mi Jin;Seo, Yeong Rong;Kim, Hak Gon;Park, Dong Jin;Yang, Woo Hyung;Kim, Yong Duck;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • Best drought tolerance index was determined through statistics analysis and growth appearance of drought tolerant plants was determined by cultivation in pot and sloping land. For determination of best drought tolerant indicators, RD(Resistant dry days), LD(Leaf area), UTR(Unit transpiration), RWC(Relative water content), RWL(Relative water loss), LA(Leaf area), SN(Stoma unmber) and SA(Stoma area) were carried out by correlation and PCA analysis. RWL and UTR were affected on plant drought tolerance according to comparison among six indices for resistant dry days. The PCs axes separated SA, LA, RD and RWC and SN. UTR was negatively correlated with SA, RWL were also negatively correlated with RWC and SN. RWL and UTR were proved best selection indicator for the selection of drought tolerant species. Ulmus parvifolia, Bidens bipinnata, Patrinia villosa, Kummerowia striata, Arundinella hirta, Artemisia gmelini etc. were selected drought tolerant plants. Shoot growth appearance of drought resistant plants was differed pot and sloping land. Shoot growth and leaf number was no significant differences between the pot and sloping land. However, root growth of drought tolerant plants was all the difference between two cultivation. T/R ratio of drought tolerant plants was also found a big difference. T/R ratio of drought tolerant plants in sloping land was lower than that of pot. These results will be served efficiently plant breeding.

Transcriptome Profiling and Characterization of Drought-Tolerant Potato Plant (Solanum tuberosum L.)

  • Moon, Ki-Beom;Ahn, Dong-Joo;Park, Ji-Sun;Jung, Won Yong;Cho, Hye Sun;Kim, Hye-Ran;Jeon, Jae-Heung;Park, Youn-il;Kim, Hyun-Soon
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.979-992
    • /
    • 2018
  • Potato (Solanum tuberosum L.) is the third most important food crop, and breeding drought-tolerant varieties is vital research goal. However, detailed molecular mechanisms in response to drought stress in potatoes are not well known. In this study, we developed EMS-mutagenized potatoes that showed significant tolerance to drought stress compared to the wild-type (WT) 'Desiree' cultivar. In addition, changes to transcripts as a result of drought stress in WT and drought-tolerant (DR) plants were investigated by de novo assembly using the Illumina platform. One-week-old WT and DR plants were treated with -1.8 Mpa polyethylene glycol-8000, and total RNA was prepared from plants harvested at 0, 6, 12, 24, and 48 h for subsequent RNA sequencing. In total, 61,100 transcripts and 5,118 differentially expressed genes (DEGs) displaying up- or down-regulation were identified in pairwise comparisons of WT and DR plants following drought conditions. Transcriptome profiling showed the number of DEGs with up-regulation and down-regulation at 909, 977, 1181, 1225 and 826 between WT and DR plants at 0, 6, 12, 24, and 48 h, respectively. Results of KEGG enrichment showed that the drought tolerance mechanism of the DR plant can mainly be explained by two aspects, the 'photosynthetic-antenna protein' and 'protein processing of the endoplasmic reticulum'. We also divided eight expression patterns in four pairwise comparisons of DR plants (DR0 vs DR6, DR12, DR24, DR48) under PEG treatment. Our comprehensive transcriptome data will further enhance our understanding of the mechanisms regulating drought tolerance in tetraploid potato cultivars.

Exogenous Bio-Based 2,3-Butanediols Enhanced Abiotic Stress Tolerance of Tomato and Turfgrass under Drought or Chilling Stress

  • Park, Ae Ran;Kim, Jongmun;Kim, Bora;Ha, Areum;Son, Ji-Yeon;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.582-593
    • /
    • 2022
  • Among abiotic stresses in plants, drought and chilling stresses reduce the supply of moisture to plant tissues, inhibit photosynthesis, and severely reduce plant growth and yield. Thus, the application of water stress-tolerant agents can be a useful strategy to maintain plant growth under abiotic stresses. This study assessed the effect of exogenous bio-based 2,3-butanediol (BDO) application on drought and chilling response in tomato and turfgrass, and expression levels of several plant signaling pathway-related gene transcripts. Bio-based 2,3-BDOs were formulated to levo-2,3-BDO 0.9% soluble concentrate (levo 0.9% SL) and meso-2,3-BDO 9% SL (meso 9% SL). Under drought and chilling stress conditions, the application of levo 0.9% SL in creeping bentgrass and meso 9% SL in tomato plants significantly reduced the deleterious effects of abiotic stresses. Interestingly, pretreatment with levo-2,3-BDO in creeping bentgrass and meso-2,3-BDO in tomato plants enhanced JA and SA signaling pathway-related gene transcript expression levels in different ways. In addition, all tomato plants treated with acibenzolar-S-methyl (as a positive control) withered completely under chilling stress, whereas 2,3-BDO-treated tomato plants exhibited excellent cold tolerance. According to our findings, bio-based 2,3-BDO isomers as sustainable water stress-tolerant agents, levo- and meso-2,3-BDOs, could enhance tolerance to drought and/or chilling stresses in various plants through somewhat different molecular activities without any side effects.

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.