DOI QR코드

DOI QR Code

Exogenous Bio-Based 2,3-Butanediols Enhanced Abiotic Stress Tolerance of Tomato and Turfgrass under Drought or Chilling Stress

  • Park, Ae Ran (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Jongmun (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Bora (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Ha, Areum (Plant Healthcare Research Institute, JAN153 Biotech Incorporated) ;
  • Son, Ji-Yeon (Plant Healthcare Research Institute, JAN153 Biotech Incorporated) ;
  • Song, Chan Woo (Research and Development Center, GS Caltex Corporation) ;
  • Song, Hyohak (Research and Development Center, GS Caltex Corporation) ;
  • Kim, Jin-Cheol (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2022.01.21
  • Accepted : 2022.04.11
  • Published : 2022.05.28

Abstract

Among abiotic stresses in plants, drought and chilling stresses reduce the supply of moisture to plant tissues, inhibit photosynthesis, and severely reduce plant growth and yield. Thus, the application of water stress-tolerant agents can be a useful strategy to maintain plant growth under abiotic stresses. This study assessed the effect of exogenous bio-based 2,3-butanediol (BDO) application on drought and chilling response in tomato and turfgrass, and expression levels of several plant signaling pathway-related gene transcripts. Bio-based 2,3-BDOs were formulated to levo-2,3-BDO 0.9% soluble concentrate (levo 0.9% SL) and meso-2,3-BDO 9% SL (meso 9% SL). Under drought and chilling stress conditions, the application of levo 0.9% SL in creeping bentgrass and meso 9% SL in tomato plants significantly reduced the deleterious effects of abiotic stresses. Interestingly, pretreatment with levo-2,3-BDO in creeping bentgrass and meso-2,3-BDO in tomato plants enhanced JA and SA signaling pathway-related gene transcript expression levels in different ways. In addition, all tomato plants treated with acibenzolar-S-methyl (as a positive control) withered completely under chilling stress, whereas 2,3-BDO-treated tomato plants exhibited excellent cold tolerance. According to our findings, bio-based 2,3-BDO isomers as sustainable water stress-tolerant agents, levo- and meso-2,3-BDOs, could enhance tolerance to drought and/or chilling stresses in various plants through somewhat different molecular activities without any side effects.

Keywords

Acknowledgement

This research was supported by GS Caltex Corporation, Republic of Korea.

References

  1. Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14. https://doi.org/10.1007/s00425-003-1105-5
  2. Singh D, Laxmi A. 2015. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front. Plant Sci. 6: 895. https://doi.org/10.3389/fpls.2015.00895
  3. Hetherington SE, Oquist G. 1988. Monitoring chilling injury: a comparison of chlorophyll fluorescence measurements, post-chilling growth and visible symptoms of injury in Zea mays. Physiol. Plant. 72: 241-247. https://doi.org/10.1111/j.1399-3054.1988.tb05829.x
  4. Sourour A, Afef O, Mounir R, Mongi BY. 2017. A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Int. J. Eng. Sci. 6: 1-4. https://doi.org/10.1016/0020-7225(68)90033-5
  5. Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69: 1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
  6. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278: 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
  7. Calvo P, Nelson L, Kloepper JW. 2014. Agricultural uses of plant biostimulants. Plant Soil. 383: 3-41. https://doi.org/10.1007/s11104-014-2131-8
  8. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW. 2001. Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust. J. Plant Physiol. 28: 829-836.
  9. Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, et al. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148: 2097-2109. https://doi.org/10.1099/00221287-148-7-2097
  10. Bottomley W. 1909. Some effects of nitrogen-fixing bacteria on the growth of non-leguminous plants. Proc. Roy. Soc. London B. 81: 287-289. https://doi.org/10.1098/rspb.1909.0024
  11. Kloepper JW, Lifshitz R, Zablotowicz RM. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-44. https://doi.org/10.1016/0167-7799(89)90057-7
  12. Choudhary D, Sharma K, Gaur R. 2011. Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol. Lett. 33: 1905-1910. https://doi.org/10.1007/s10529-011-0662-0
  13. Govindasamy V, George P, Aher L, Ramesh SV, Thangasamy A, Anandan S, et al. 2017. Comparative conventional and phenomics approaches to assess symbiotic effectiveness of Bradyrhizobia strains in soybean (Glycine max L. Merrill) to drought. Sci. Rep. 7: 6958. https://doi.org/10.1038/s41598-017-06441-3
  14. Ruzzi M, Aroca R. 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hort. 196: 124-134. https://doi.org/10.1016/j.scienta.2015.08.042
  15. Ji X-J, Huang H, Ouyang P-K. 2011. Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 29: 351-364. https://doi.org/10.1016/j.biotechadv.2011.01.007
  16. Voloch M, Jansen NB, Ladisch M, Tsao GT, Narayan R, Rodwell VW. 1985. 2, 3-Butanediol, pp. 933-947. In Moo-Young M, Conney CL, Humphrey AE (eds.), Comprehensive biotechnology, Pergamon Press, New York, USA.
  17. Li Z, Ji X, Kan S, Qiao H, Jiang M, Lu D, et al. 2010. Past, present, and future industrial biotechnology in China. Adv. Biochem. Eng. Biotechnol. 122: 1-42. https://doi.org/10.1007/10_2010_76
  18. Song CW, Rathnasingh C, Park JM, Lee J, Song H. 2018. Isolation and evaluation of Bacillus strains for industrial production of 2, 3-butanediol. J. Microbiol. Biotechnol. 28: 409-417. https://doi.org/10.4014/jmb.1710.10038
  19. Song CW, Chelladurai R, Park JM, Song H. 2020. Engineering a newly isolated Bacillus licheniformis strain for the production of (2R, 3R)-butanediol. J. Ind. Microbiol. Biotechnol. 47: 97-108. https://doi.org/10.1007/s10295-019-02249-4
  20. Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, et al. 2008. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant Microbe. Interact. 21: 1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  21. Garg S, Jain A. 1995. Fermentative production of 2, 3-butanediol: a review. Bioresour. Technol. 51: 103-109. https://doi.org/10.1016/0960-8524(94)00136-O
  22. Cortes-Barco A, Goodwin P, Hsiang T. 2010. Comparison of induced resistance activated by benzothiadiazole,(2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59: 643-653. https://doi.org/10.1111/j.1365-3059.2010.02283.x
  23. Syu M-J. 2001. Biological production of 2, 3-butanediol. Appl. Microbiol. Biotechnol. 55: 10-18. https://doi.org/10.1007/s002530000486
  24. Cortes-Barco A, Hsiang T, Goodwin P. 2010. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R, 3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157: 179-189. https://doi.org/10.1111/j.1744-7348.2010.00417.x
  25. Song CW, Park JM, Chung SC, Lee SY, Song H. 2019. Microbial production of 2, 3-butanediol for industrial applications. J. Ind. Microbiol. Biotechnol. 46: 1583-1601. https://doi.org/10.1007/s10295-019-02231-0
  26. Aime S, Alabouvette C, Steinberg C, Olivain C. 2013. The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol. Plant Microbe Interact. 26: 918-926. https://doi.org/10.1094/mpmi-12-12-0290-r
  27. Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q. 2013. Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. J. Exp. Bot. 64: 637-650. https://doi.org/10.1093/jxb/ers360
  28. Leonetti P, Zonno MC, Molinari S, Altomare C. 2017. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Plant Cell Rep. 36: 621-631. https://doi.org/10.1007/s00299-017-2109-0
  29. Mhamdi A, Van Breusegem F. 2018. Reactive oxygen species in plant development. Development 145: dev164376. https://doi.org/10.1242/dev.164376
  30. Xu Y, Burgess P, Zhang X, Huang B. 2016. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. J. Exp. Bot. 67: 1979-1992. https://doi.org/10.1093/jxb/erw019
  31. Jiang H-Y, Zhang J-L, Yang J-W, Ma H-L. 2018. Transcript profiling and gene identification involved in the ethylene signal transduction pathways of creeping bentgrass (Agrostis stolonifera) during ISR response induced by butanediol. Molecules 23: 706. https://doi.org/10.3390/molecules23030706
  32. Li Z, Peng Y, Huang B. 2020. Transcriptional regulation of hydrogen peroxide and calcium for signaling transduction and stress-defensive genes contributing to improved drought tolerance in creeping bentgrass. J. Am. Soc. Hortic. Sci. 1: 1-11.
  33. Aroca R, Porcel R, Ruiz-Lozano JM. 2012. Regulation of root water uptake under abiotic stress conditions. J. Exp. Bot. 63: 43-57. https://doi.org/10.1093/jxb/err266
  34. Aroca R, Vernieri P, Irigoyen JJ, Sanchez-Diaz M, Tognoni F, Pardossi A. 2003. Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci. 165: 671-679. https://doi.org/10.1016/S0168-9452(03)00257-7
  35. Lastochkina O. 2019. Bacillus subtilis-mediated abiotic stress tolerance in plants, pp. 97-133. In Islam MT, Rahman MM, Pandey P, Boehme M, Haesaert G (eds.), Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol, Vol 2. Springer Nature, Bremgarten, Switzerland.
  36. He X, Jiang J, Wang CQ, Dehesh K. 2017. ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression. J. Integr. Plant Biol. 59: 275-287. https://doi.org/10.1111/jipb.12524
  37. Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, et al. 2019. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Fron. Plant Sci. 10: 1349. https://doi.org/10.3389/fpls.2019.01349
  38. Dat JF, Foyer CH, Scott IM. 1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118: 1455-1461. https://doi.org/10.1104/pp.118.4.1455
  39. Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. 2000. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J. Plant Physiol. 156: 659-665. https://doi.org/10.1016/S0176-1617(00)80228-X
  40. Hamada AM. 1998. Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants, pp. 2581-2584. In Garab G (ed.), Photosynthesis: Mechanisms and effects, Vol 4. Kluwer Academic Publishers, Dordrecht.
  41. Al-Hakimi A, Hamada A. 2001. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol. Plant. 44: 253-261. https://doi.org/10.1023/A:1010255526903
  42. Farooq M, Basra S, Wahid A, Ahmad N, Saleem B. 2009. Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J. Agron. Crop. Sci. 195: 237-246. https://doi.org/10.1111/j.1439-037X.2009.00365.x
  43. Janda T, Szalai G, Tari I, Paldi E. 1999. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208: 175-180. https://doi.org/10.1007/s004250050547
  44. Szalai G, Tari I, Janda T, Pestenacz A, Paldi E. 2000. Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol. Plant. 43: 637-640. https://doi.org/10.1023/A:1002824721597
  45. Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189. https://doi.org/10.1146/annurev.pp.35.060184.001103
  46. Bleecker AB. 1999. Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci. 4: 269-274. https://doi.org/10.1016/S1360-1385(99)01427-2
  47. Zhang Z, Li F, Li D, Zhang H, Huang R. 2010. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta. 232: 765-774. https://doi.org/10.1007/s00425-010-1208-8
  48. Arraes FBM, Beneventi MA, De Sa MEL, Paixao JFR, Albuquerque EVS, Marin SRR, et al. 2015. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol. 15: 213. https://doi.org/10.1186/s12870-015-0597-z
  49. Sarwat M, Tuteja N. 2017. Hormonal signaling to control stomatal movement during drought stress. Plant Gene 11: 143-153. https://doi.org/10.1016/j.plgene.2017.07.007
  50. Uji Y, Taniguchi S, Tamaoki D, Shishido H, Akimitsu K, Gomi K. 2016. Overexpression of OsMYC2 results in the up-regulation of early JA-responsive genes and bacterial blight resistance in rice. Plant Cell Physiol. 57: 1814-1827. https://doi.org/10.1093/pcp/pcw101
  51. Zhu J-K. 2016. Abiotic stress signaling and responses in plants. Cell 167: 313-324. https://doi.org/10.1016/j.cell.2016.08.029
  52. Savchenko T, Kolla VA, Wang C-Q, Nasafi Z, Hicks DR, Phadungchob B, et al. 2014. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 164: 1151-1160. https://doi.org/10.1104/pp.113.234310
  53. Srivalli B, Sharma G, Khanna-Chopra R. 2003. Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol. Plant 119: 503-512. https://doi.org/10.1046/j.1399-3054.2003.00125.x
  54. Hussain S, Khan F, Cao W, Wu L, Geng M. 2016. Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front. Plant Sci. 7: 439. https://doi.org/10.3389/fpls.2016.00439
  55. Baier M, Kandlbinder A, Golldack D, Dietz KJ. 2005. Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ. 28: 1012-1020. https://doi.org/10.1111/j.1365-3040.2005.01326.x
  56. Tarchoune I, Sgherri C, Izzo R, Lachaal M, Ouerghi Z, Navari-Izzo F. 2010. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol. Biochem. 48: 772-777. https://doi.org/10.1016/j.plaphy.2010.05.006
  57. Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  58. Kazan K. 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20: 219-229. https://doi.org/10.1016/j.tplants.2015.02.001
  59. Tian D, Traw M, Chen J, Kreitman M, Bergelson J. 2003. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423: 74-77. https://doi.org/10.1038/nature01588
  60. Soylu E, Soylu S, Baysal O. 2003. Induction of disease resistance and antioxidant enzymes by acibenzolar-S-methyl against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato. J. Plant Pathol. 85: 175-181.
  61. Jespersen D, Yu J, Huang B. 2017. Metabolic effects of acibenzolar-S-methyl for improving heat or drought stress in creeping bentgrass. Front. Plant Sci. 8: 1224. https://doi.org/10.3389/fpls.2017.01224
  62. Shekoofa A, Rosas-Anderson P, Carley DS, Sinclair TR, Rufty TW. 2016. Limited transpiration under high vapor pressure deficits of creeping bentgrass by application of Daconil-Action®. Planta 243: 421-427. https://doi.org/10.1007/s00425-015-2417-y