Acknowledgement
This research was supported by GS Caltex Corporation, Republic of Korea.
References
- Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14. https://doi.org/10.1007/s00425-003-1105-5
- Singh D, Laxmi A. 2015. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front. Plant Sci. 6: 895. https://doi.org/10.3389/fpls.2015.00895
- Hetherington SE, Oquist G. 1988. Monitoring chilling injury: a comparison of chlorophyll fluorescence measurements, post-chilling growth and visible symptoms of injury in Zea mays. Physiol. Plant. 72: 241-247. https://doi.org/10.1111/j.1399-3054.1988.tb05829.x
- Sourour A, Afef O, Mounir R, Mongi BY. 2017. A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Int. J. Eng. Sci. 6: 1-4. https://doi.org/10.1016/0020-7225(68)90033-5
- Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69: 1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
- Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278: 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
- Calvo P, Nelson L, Kloepper JW. 2014. Agricultural uses of plant biostimulants. Plant Soil. 383: 3-41. https://doi.org/10.1007/s11104-014-2131-8
- Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW. 2001. Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust. J. Plant Physiol. 28: 829-836.
- Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, et al. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148: 2097-2109. https://doi.org/10.1099/00221287-148-7-2097
- Bottomley W. 1909. Some effects of nitrogen-fixing bacteria on the growth of non-leguminous plants. Proc. Roy. Soc. London B. 81: 287-289. https://doi.org/10.1098/rspb.1909.0024
- Kloepper JW, Lifshitz R, Zablotowicz RM. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-44. https://doi.org/10.1016/0167-7799(89)90057-7
- Choudhary D, Sharma K, Gaur R. 2011. Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol. Lett. 33: 1905-1910. https://doi.org/10.1007/s10529-011-0662-0
- Govindasamy V, George P, Aher L, Ramesh SV, Thangasamy A, Anandan S, et al. 2017. Comparative conventional and phenomics approaches to assess symbiotic effectiveness of Bradyrhizobia strains in soybean (Glycine max L. Merrill) to drought. Sci. Rep. 7: 6958. https://doi.org/10.1038/s41598-017-06441-3
- Ruzzi M, Aroca R. 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hort. 196: 124-134. https://doi.org/10.1016/j.scienta.2015.08.042
- Ji X-J, Huang H, Ouyang P-K. 2011. Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 29: 351-364. https://doi.org/10.1016/j.biotechadv.2011.01.007
- Voloch M, Jansen NB, Ladisch M, Tsao GT, Narayan R, Rodwell VW. 1985. 2, 3-Butanediol, pp. 933-947. In Moo-Young M, Conney CL, Humphrey AE (eds.), Comprehensive biotechnology, Pergamon Press, New York, USA.
- Li Z, Ji X, Kan S, Qiao H, Jiang M, Lu D, et al. 2010. Past, present, and future industrial biotechnology in China. Adv. Biochem. Eng. Biotechnol. 122: 1-42. https://doi.org/10.1007/10_2010_76
- Song CW, Rathnasingh C, Park JM, Lee J, Song H. 2018. Isolation and evaluation of Bacillus strains for industrial production of 2, 3-butanediol. J. Microbiol. Biotechnol. 28: 409-417. https://doi.org/10.4014/jmb.1710.10038
- Song CW, Chelladurai R, Park JM, Song H. 2020. Engineering a newly isolated Bacillus licheniformis strain for the production of (2R, 3R)-butanediol. J. Ind. Microbiol. Biotechnol. 47: 97-108. https://doi.org/10.1007/s10295-019-02249-4
- Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, et al. 2008. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant Microbe. Interact. 21: 1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
- Garg S, Jain A. 1995. Fermentative production of 2, 3-butanediol: a review. Bioresour. Technol. 51: 103-109. https://doi.org/10.1016/0960-8524(94)00136-O
- Cortes-Barco A, Goodwin P, Hsiang T. 2010. Comparison of induced resistance activated by benzothiadiazole,(2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59: 643-653. https://doi.org/10.1111/j.1365-3059.2010.02283.x
- Syu M-J. 2001. Biological production of 2, 3-butanediol. Appl. Microbiol. Biotechnol. 55: 10-18. https://doi.org/10.1007/s002530000486
- Cortes-Barco A, Hsiang T, Goodwin P. 2010. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R, 3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157: 179-189. https://doi.org/10.1111/j.1744-7348.2010.00417.x
- Song CW, Park JM, Chung SC, Lee SY, Song H. 2019. Microbial production of 2, 3-butanediol for industrial applications. J. Ind. Microbiol. Biotechnol. 46: 1583-1601. https://doi.org/10.1007/s10295-019-02231-0
- Aime S, Alabouvette C, Steinberg C, Olivain C. 2013. The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol. Plant Microbe Interact. 26: 918-926. https://doi.org/10.1094/mpmi-12-12-0290-r
- Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q. 2013. Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. J. Exp. Bot. 64: 637-650. https://doi.org/10.1093/jxb/ers360
- Leonetti P, Zonno MC, Molinari S, Altomare C. 2017. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Plant Cell Rep. 36: 621-631. https://doi.org/10.1007/s00299-017-2109-0
- Mhamdi A, Van Breusegem F. 2018. Reactive oxygen species in plant development. Development 145: dev164376. https://doi.org/10.1242/dev.164376
- Xu Y, Burgess P, Zhang X, Huang B. 2016. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. J. Exp. Bot. 67: 1979-1992. https://doi.org/10.1093/jxb/erw019
- Jiang H-Y, Zhang J-L, Yang J-W, Ma H-L. 2018. Transcript profiling and gene identification involved in the ethylene signal transduction pathways of creeping bentgrass (Agrostis stolonifera) during ISR response induced by butanediol. Molecules 23: 706. https://doi.org/10.3390/molecules23030706
- Li Z, Peng Y, Huang B. 2020. Transcriptional regulation of hydrogen peroxide and calcium for signaling transduction and stress-defensive genes contributing to improved drought tolerance in creeping bentgrass. J. Am. Soc. Hortic. Sci. 1: 1-11.
- Aroca R, Porcel R, Ruiz-Lozano JM. 2012. Regulation of root water uptake under abiotic stress conditions. J. Exp. Bot. 63: 43-57. https://doi.org/10.1093/jxb/err266
- Aroca R, Vernieri P, Irigoyen JJ, Sanchez-Diaz M, Tognoni F, Pardossi A. 2003. Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci. 165: 671-679. https://doi.org/10.1016/S0168-9452(03)00257-7
- Lastochkina O. 2019. Bacillus subtilis-mediated abiotic stress tolerance in plants, pp. 97-133. In Islam MT, Rahman MM, Pandey P, Boehme M, Haesaert G (eds.), Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol, Vol 2. Springer Nature, Bremgarten, Switzerland.
- He X, Jiang J, Wang CQ, Dehesh K. 2017. ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression. J. Integr. Plant Biol. 59: 275-287. https://doi.org/10.1111/jipb.12524
- Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, et al. 2019. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Fron. Plant Sci. 10: 1349. https://doi.org/10.3389/fpls.2019.01349
- Dat JF, Foyer CH, Scott IM. 1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118: 1455-1461. https://doi.org/10.1104/pp.118.4.1455
- Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. 2000. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J. Plant Physiol. 156: 659-665. https://doi.org/10.1016/S0176-1617(00)80228-X
- Hamada AM. 1998. Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants, pp. 2581-2584. In Garab G (ed.), Photosynthesis: Mechanisms and effects, Vol 4. Kluwer Academic Publishers, Dordrecht.
- Al-Hakimi A, Hamada A. 2001. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol. Plant. 44: 253-261. https://doi.org/10.1023/A:1010255526903
- Farooq M, Basra S, Wahid A, Ahmad N, Saleem B. 2009. Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J. Agron. Crop. Sci. 195: 237-246. https://doi.org/10.1111/j.1439-037X.2009.00365.x
- Janda T, Szalai G, Tari I, Paldi E. 1999. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208: 175-180. https://doi.org/10.1007/s004250050547
- Szalai G, Tari I, Janda T, Pestenacz A, Paldi E. 2000. Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol. Plant. 43: 637-640. https://doi.org/10.1023/A:1002824721597
- Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189. https://doi.org/10.1146/annurev.pp.35.060184.001103
- Bleecker AB. 1999. Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci. 4: 269-274. https://doi.org/10.1016/S1360-1385(99)01427-2
- Zhang Z, Li F, Li D, Zhang H, Huang R. 2010. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta. 232: 765-774. https://doi.org/10.1007/s00425-010-1208-8
- Arraes FBM, Beneventi MA, De Sa MEL, Paixao JFR, Albuquerque EVS, Marin SRR, et al. 2015. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol. 15: 213. https://doi.org/10.1186/s12870-015-0597-z
- Sarwat M, Tuteja N. 2017. Hormonal signaling to control stomatal movement during drought stress. Plant Gene 11: 143-153. https://doi.org/10.1016/j.plgene.2017.07.007
- Uji Y, Taniguchi S, Tamaoki D, Shishido H, Akimitsu K, Gomi K. 2016. Overexpression of OsMYC2 results in the up-regulation of early JA-responsive genes and bacterial blight resistance in rice. Plant Cell Physiol. 57: 1814-1827. https://doi.org/10.1093/pcp/pcw101
- Zhu J-K. 2016. Abiotic stress signaling and responses in plants. Cell 167: 313-324. https://doi.org/10.1016/j.cell.2016.08.029
- Savchenko T, Kolla VA, Wang C-Q, Nasafi Z, Hicks DR, Phadungchob B, et al. 2014. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 164: 1151-1160. https://doi.org/10.1104/pp.113.234310
- Srivalli B, Sharma G, Khanna-Chopra R. 2003. Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol. Plant 119: 503-512. https://doi.org/10.1046/j.1399-3054.2003.00125.x
- Hussain S, Khan F, Cao W, Wu L, Geng M. 2016. Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front. Plant Sci. 7: 439. https://doi.org/10.3389/fpls.2016.00439
- Baier M, Kandlbinder A, Golldack D, Dietz KJ. 2005. Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ. 28: 1012-1020. https://doi.org/10.1111/j.1365-3040.2005.01326.x
- Tarchoune I, Sgherri C, Izzo R, Lachaal M, Ouerghi Z, Navari-Izzo F. 2010. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol. Biochem. 48: 772-777. https://doi.org/10.1016/j.plaphy.2010.05.006
- Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
- Kazan K. 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20: 219-229. https://doi.org/10.1016/j.tplants.2015.02.001
- Tian D, Traw M, Chen J, Kreitman M, Bergelson J. 2003. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423: 74-77. https://doi.org/10.1038/nature01588
- Soylu E, Soylu S, Baysal O. 2003. Induction of disease resistance and antioxidant enzymes by acibenzolar-S-methyl against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato. J. Plant Pathol. 85: 175-181.
- Jespersen D, Yu J, Huang B. 2017. Metabolic effects of acibenzolar-S-methyl for improving heat or drought stress in creeping bentgrass. Front. Plant Sci. 8: 1224. https://doi.org/10.3389/fpls.2017.01224
- Shekoofa A, Rosas-Anderson P, Carley DS, Sinclair TR, Rufty TW. 2016. Limited transpiration under high vapor pressure deficits of creeping bentgrass by application of Daconil-Action®. Planta 243: 421-427. https://doi.org/10.1007/s00425-015-2417-y