본 논문의 목적은 Terra MODIS NDVI(Normalized Difference Vegetation Index)를 이용하여 3월 하순 논 지역의 건조상태를 평가함으로써 식생지수의 가뭄표현 가능성을 확인하는데 있다. 2000년부터 2015년까지의 평균 NDVI와 해당연도 NDVI를 활용한 DCI(Dry Condition Index)를 개발하여 논지역의 건조상태를 분석하였다. 전국을 대상으로 3월 16일부터 5월 25일까지의 16일 간격 DCI를 산정하여 시공간적 건조도를 평가하였으며, 특히 4월 7일(3/23-4/7) DCI는 가뭄년에 대하여 논 지역이 건조함을 잘 나타냄을 확인하였다. 4월 7일의 건조상태 DCI 값은 0.04-0.08 으로 나타났고, 정상상태는 -0.04~0.01이었다. 본 연구에서 개발한 DCI는 초봄의 논 건조 상태를 평가에 대한 지표로서의 활용이 가능할 것으로 판단된다.
연구목적: 본 연구는 인공신경망 라이브러리 기술을 이용하여, 기상 데이터 변화 예측을 통한 한반도 가뭄 취약지역 분석을 목적으로 하였다. 연구방법: 연구지역 중 북한 지역의 다양한 기상데이터의 확보가 힘든 특수성을 고려하여 연구지역의 월별 누적강수량 데이터를 활용하였으며, 통계프로그램 R을 이용하여 인공신경망 알고리즘을 통한 기상데이터 추정을 수행하였다. 연구결과: 본 논문에서 진행한 연구 결과, 실제 데이터와 예측 데이터 간의 상관계수 값은 인공신경망 알고리즘을 활용한 결과가 회귀분석 결과보다 평균 0.043879 더 높은 것으로 확인되었다. 결론: 연구의 결과는 가뭄 대응을 위한 재난대응 기초 연구 자료로 활용 가능할 것으로 기대한다.
전 세계적으로 가뭄은 농업·식량안보·수자원관리·생태계 등 다양한 분야에서 부정적인 영향을 미치고 있다. 일반적으로 가뭄은 강수량의 부족으로 발생하고, 지표수와 지하수의 가용성이 제한됨에 따라 작물생산 및 사회·경제적으로 피해가 발생한다. 이러한 영향은 특정 가뭄 모니터링 및 조기 경보와 관련하여 가뭄 지표를 결정할 때 중요한 고려사항이다. 가뭄을 분석하기 위해서는 가뭄 지표를 적용하여 정확하게 반영하고 나타내는 것이 중요하다. 가뭄의 특성을 객관적으로 정량화하기 어렵기 때문에 다양한 지표와 계산을 통한 가뭄 모니터링 및 분석 기술이 필요하며, 강수량, 토양수분, 증발산량 및 식생과 관련하여 가뭄 지표가 개발되었다. 본 연구에서는 혼합 가뭄 지표 (Drought Indicator Blends) 활용하여 우리나라의 가뭄을 분석하였다. 혼합 가뭄 지표는 NOAA (National Oceanic and Atmospheric Administration)의 기후 예측 센터 (Climate Prediction Center, CPC)에서 여러 가뭄 지수를 단기 또는 장기로 구분하여 통합, 개발되었다. 단기 및 장기 혼합 제품은 PDSI (Palmer Drought Severity Index), Z-Index, SPI (Standardized Precipitation Index)를 결합하여 가뭄을 추정한다. 혼합 가뭄 지표는 해당 지역의 단기 및 장기 가뭄을 이해하는데 유용하게 활용할 수 있으며, 현재까지 미국에서 활발하게 연구가 진행되고 있다. 단기 지표는 비관개 농업, 토양수분 등 강수량에 밀접한 관련이 있는 가뭄과 관련되어 평가하며, 장기 지표의 경우 관개 농업, 지하수위 등 장기간 가뭄과 연관성을 가지고 있다. 단기 및 장기 혼합 가뭄 지표를 우리나라에 적용함으로써 기존 단일 가뭄 지수를 활용한 가뭄 분석 이상으로 다방면에서 효율적인 가뭄 모니터링을 할 수 있을 것이라 판단된다.
The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.
산불로 인한 피해를 최소화하기 위해서 산불위험 예보 정보를 제공하는 것은 필수적이다. 따라서 본 연구에서는 우리나라를 대상으로 기계학습 기반의 산불위험 중기예보(1일 후부터 7일 후까지) 모델을 개발하였다. Global Data Assimilation and Prediction System (GDAPS)의 기상예보 자료와 기 개발된 산불위험지수(Fire Risk Index, FRI)의 과거 및 현재 정보, 그리고 기타 환경요소(i.e., 고도, 산불다발지수, 가뭄지수)의 현재 정보를 반영하여 모델을 개발하였다. 본 연구에서는 실시간 학습을 통해 모델을 개발하였으며, 효율적인 모델 개발을 목적으로 과거 산불위험지수와 가뭄지수의 유무를 고려하여 세가지 경우(Scheme 1: 과거 산불위험지수 및 가뭄지수, Scheme 2: 과거 산불위험지수, Scheme 3: 과거 산불위험지수 변화 추세 및 가뭄지수)로 연구를 수행하였다. 본 연구에서 개발된 산불위험예보모델은 예보기간에 상관없이 높은 정확도(피어슨 상관계수(Pearson correlation) >0.8, relative root mean square error <10%)를 나타냈으며, 실제 산불 발생 건에 대해서도 유의미한 결과를 보였다. 과거 산불위험지수의 추세보다는 산불위험지수 값 자체를 입력변수로 사용하는 것이 높은 정확도를 보였으며, 가뭄지수 사용과 관계없이 좋은 결과를 나타냈다.
In the light of these analysis of the recorded rainfall data from the meteorological observatories in Kyungpook area, hydraulic and hydrological data based on the representative watershed area and questionnaire or visiting letters to the 21 Land Reclamation Association in Kyungpook province, the hydrological backgrounds being the question to the irrigation facilities in Kyungpook Province or nation wide were studied partialy and the system of conservation and management of agricultural water sources facilities, prevention countermeasures to the drought and flood disasters, prediction of available surface waterflow and need or needless of new facilities establishment were reviewed in this paper. In the results, Technical and financial management and conservation investments of the already constructed ficalities should urgently and firstly be considered than the newly being established one.
Communications for Statistical Applications and Methods
/
제30권5호
/
pp.453-465
/
2023
The prediction problem of univariate records, though not addressed in multivariate records, has been discussed by many authors based on records values. There are various definitions for multivariate records among which depth-based records have been selected for the aim of this paper. In this paper, by means of the maximum likelihood and conditional median methods, point and interval predictions of depth values which are related to the future depth-based multivariate records are considered on the basis of the observed ones. The observations derived from some elements of the elliptical distributions are the main reason of studying this problem. Finally, the satisfactory performance of the prediction methods is illustrated via some simulation studies and a real dataset about Kermanshah city drought.
This study analyzed the applications of near real-time drought monitoring using satellite rainfall for the Korean Peninsula and un-gaged basins. We used AWS data of Yongdam-Dam, Hoengseong-Dam in Korea area, the meteorological station of Nakhon Rachasima, Pak chong for test-bed to evaluate the validation and the opportunity for un-gaged basins. In addition, we calculated EDI (Effective doought index) using the stations and co-located PERSIANN-CDR, TRMM (Tropical Rainfall Measurement Mission) TMPA (The TRMM Multisatellite Precipitation Analysis), GPM IMERG (the integrated Multi-satellitE Retrievals for GPM) rainfall data and compared the EDI-based station data with satellite data for applications of drought monitoring. The results showed that the correlation coefficient and the determination coefficient were 0.830 and 0.914 in Yongdam-dam, and 0.689 and 0.835 in Hoengseng-Dam respectively. Also, the correlation coefficient were 0.830, 0.914 from TRMM TMPA datasets and compasion with 0.660, 0.660 based on PERSIANN-CDR and TRMM data in nakhon and pakchong station. Our results were confirmed possibility of near real-time drought monitoring using EDI with daily satellite rainfall for un-gaged basins.
In this study the validities of runoff prediction methods are reviewed around ESP (Ensemble Streamflow Prediction) techniques. The improvements of runoff predictions on Yongdam river basin are evaluated by the comparison of different prediction methods including ESP incorporated with qualitative meteorological outlooks provided by meteorological agency as well as the runoff forecasting based on the analysis of the historical rainfall scenarios. As a result it is assessed that runoff predictions with ESP may give rise to more accurate results than the ordinary historical average runoffs. In deed the latter gave the mean of yearly absolute error as to be 60.86 MCM while the errors of the former ones amounted to 44.12 MCM (ESP) and 42.83 MCM (ESP incorporated with qualitative meteorological outlooks) respectively. In addition it is confirmed that ESP incorporated with qualitative meteorological outlooks could improve the accuracy of the results more and more. Especially the degree of improvement of ESP with meteorological outlooks shows rising by 10.8% in flood season and 8% in drought season. Therefore the methods of runoff predictions with ESP can be further used as the basic forecasting information tool for the purpose of the effective watershed management.
본 논문은 학문적인 이해를 기반을 둔 예측을 수행하기 위해 FDNN(: Flood drought index neural network) 알고리즘을 제시한다. 데이터에 의존한 예측이 아닌 학문적인 이해를 기반을 둔 예측을 딥러닝에 적용하기 위해, 알고리즘을 수리, 수문학을 기반으로 구성하였다. 강수량의 입력으로 하천의 유량을 예측하는 모델을 구성하여 K-교차검증을 통해 모델의 성능을 측정한다. 제시한 알고리즘의 성능을 증명하기 위해 시계열 예측에서 가장 많이 사용되는 LSTM(: Long short term memory) 알고리즘의 예측 성능과 비교하여 제시한 알고리즘의 우수성을 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.