• Title/Summary/Keyword: Drought impact

Search Result 171, Processing Time 0.024 seconds

Use of a Rubber Dam System in Consideration of Climate Change (기후변화 대응을 위한 고무보시스템 선정 방안 연구)

  • Hwang, Yun-Bin;Park, Ki-Hak;Kim, Seo-Hyun;Kang, Hun;Kim, Ji-ho
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.319-324
    • /
    • 2018
  • Due to climate change, water shortages and water-related disasters will be serious. Since the damage and frequency of drought are increasing, the importance of water resource management technology is increasing. In this study, we analyzed the amount of greenhouse gas and the environmental impact caused by the production and operation system technologies of movable weir among various water resource management technologies. The research subjects were air inflatable rubber dams widely used in rivers and upright type rubber dams, which are an improvement on the existing rubber type. Each type of dam was studied at sizes of $1,500H{\times}10,000L\;mm$ and $3,000H{\times}20,000L\;mm$, and the two types and two sizes were compared and analyzed. Using life cycle assessment, we examined the environmental impacts using the amount of electricity required for operation and the discretionary amount required for production. In the '$1,500H{\times}10,000L$' dams, the global warming indexes were $9.35E+04kg\;CO_2-eq$. for upright type and $7.36E+04kg\;CO_2-eq$. for inflatable type. At size of '$3,000H{\times}20,000L$' the global warming indexes were $9.09E+05kg\;CO_2-eq$. for upright type and $1.07E+06kg\;CO_2-eq$. for inflatable type. Analysis of the life cycle environmental impact showed that the environmental impact of the air inflatable rubber dam was reduced by 39.8% at '$1,500H{\times}10,000L$' compared to the larger size. At the larger '$3,000H{\times}20,000L$' size, the upright dam showed a 10.1% smaller impact than the air inflatable rubber dam. Selection of water resource management system should consider climate change, not only management purpose and cost. Additional studies and improvements on rubber dam systems should be made.

A study on spatial onset characteristics of flash drought based on GLDAS evaporative stress in the Korean Peninsula (GLDAS 증발 스트레스 기반 한반도 돌발가뭄의 공간적 발생 특성 연구)

  • Kang, Minsun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.631-639
    • /
    • 2023
  • Flash drought (FD), characterized by the rapid onset and intensification, can significantly impact ecosystems and induce immediate water stress. A more comprehensive understanding of the causes and characteristics of FD events is required to enhance drought monitoring. Therefore, we investigated the FD events took place over the Korean peninsula using Global Land Data Assimilation System (GLDAS) data from 2012 to 2022. We first detected FD events using the stress-based method (Standardized Evaporative Stress Ratio, SESR), and analyzed the frequency and duration of FDs. The FD events were classified into three cases based on the variations in Actual Evapotranspiration (AET) and potential Evapotranspiration (PET), and spatially analyzed. Results revealed that there are regional disparities in frequency and duration of FDs, with a mean frequency of 6.4 and duration of 31 days. When classified into Case 1 (normal condition), Case 2 (AET-driven), and Case 3 (PET-driven), we found that Case 2 FDs emerged approximately 1.5 times more frequently than those driven by PET (Case 3) across the Korean peninsula. Case 2 FDs were found to be induced under water-limited conditions, and led both AET and PET to be decreased. Conversely, Case 3 FDs occurred under energy-limited conditions, with increase in both. Case 2 FDs predominantly affected the northwestern and central-southern agricultural regions, while Case 3 occurred in the eastern region, characterized by forested land cover. These findings offers insights into our understanding of FDs over the Korean peninsula, considering climate factors, land cover, and water availability.

A Study on Comparative Analysis of Socio-economic Impact Assessment Methods on Climate Change and Necessity of Application for Water Management (기후변화의 사회경제적 영향평가 방법론 비교분석과 물관리 부문 적용 필요성에 관한연구)

  • Chee, Hee Mun;Park, Doo Ho
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2011
  • Although it is uncertain that the cause of changed pattern of the natural disaster related to water (i.e. flood and drought) is due to excessive carbon dioxide yielded from economic activity or the increased number of sunspots, it is apparent that there have been unusual climate change that directly affects the water resource management. Due to such a frequent unusual weather activities, there have been increased natural disaster and the most direct and major reason is considered as climate change. As we see, the climate change necessarily causes social costs. Especially, the effects on the water resource due to flood and drought take the considerable part of such costs. Therefore, this study is basic work to develop a new economic analysis technique to be used in pursuing appropriate adaptation project in field of the amount of cost damage through analysis of the effects of the climate change on the water resource. The models appeared in many reports for cost assessment of climate change were various (e.g., PAGE, DICE, AIM, IMAGE, MERGE, and etc.) and this report summarizes general characteristics of each model. To assess the effects of climate change of the water management, we defined the field of the water management on climate change. The results help post-study in field of the climate change's social-economic effect assessment, can be employed for the prioritizing process of the national fund's investment.

  • PDF

A Method to Estimate the Cell Based Sustainable Development Yield of Groundwater (셀기반 지하수 개발가능량 산정기법)

  • Chung, Il-Moon;Kim, Nam Won;Lee, Jeongwoo;Na, Hanna;Kim, Youn-Jung;Park, Seunghyuk
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.635-643
    • /
    • 2014
  • Sustaiable development yield of groundwater in Korea has been determined according to 10 year drought frequency of groundwater recharge in the standard mid-sized watershed or relatively large area of district. Therefore, the evaluation of groundwater impact in a small watershed is hard to apply. Fot this purpose, a novel approach to estimate cell based sustainable development yield of groundwater (SDYG) is suggested and applied to Gyeongju region. Cell based groundwater recharge is computed using hydrological component analysis using the SWAT-MODFLOW which is an integrated surface water-groundwater model. To estimate the potential amount of groundwater development, the existing method which uses 10 year drought frequency rainfall multiplied by recharge coefficient is adopted. Cell based SDYGs are computed and summed for 143 sub-watersheds and administrative districts. When these SDYGs are combined with groundwater usage data, the groundwater usage rate (total usage / SDYG) shows wide local variations (7.1~108.8%) which are unseen when average rate (24%) is only evaluated. Also, it is expected that additional SDYGs in any small district could be estimated.

Changes in Rice Growth Characteristics during Intermittent Drainage Period using Multiple Sensing Technology (다중 센싱 기반 중간물떼기 기간에 따른 벼 생육 특성 변화)

  • Woo-jin Im;Dong-won Kwon;Hyeok-jin Bak;Ji-hyeon Lee;Sungyul Chang;Wan-Gyu Sang;Nam-Jin Chung;Jung-il Cho;Woon-Ha Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.78-87
    • /
    • 2024
  • The risk of global warming is increasing due to rapid climate change and increased greenhouse gas (GHG) emissions. Among the greenhouse gases, methane has a strong warming effect; in particular, 51.2% of the agricultural sector's methane emissions are from flooded rice fields. According to the current standard rice cultivation method, rice is grown during the maximum tillering stage with an intermittent drainage period of approximately 2 weeks. During the flooding period, methane-producing bacteria are active, but the activity of methane-producing bacteria and the amount of methane gas produced are reduced when the soil becomes oxidized through watering. Accordingly, this study used multiple-sensing technology to analyze the growth response according to the intermittent drainage period and to identify the extended intermittent drainage period with less impact on rice production. The equipment used for growth observations included NDVI, PRI, and IR sensors. The results confirmed that growth indices related to stress, such as NDVI and PRI, were not significantly different from those of the control when treated within 3 weeks of drainage, but drastically decreased when the drainage period was extended beyond 4 weeks. These results appear to result from the fact that soil water content (volumetric water content) also dropped to below 20% 4 weeks after irrigation, creating actual drought stress conditions. The 22nd day after treatment, when the soil moisture content reached 20%, was considered the point in time when drought stress conditions were formed. The point at which the SPAD value decreased to 0.6% of normal was estimated to be 23.5 days after treatment by using the regression equation between NDVI and SPAD.

Assessment of Water Circulation and Hydro-characteristics with LID techniques in urbanized areas (도시지역에 적용된 LID 기법의 강우시 수문특성 및 물순환 평가)

  • Choi, Hyeseon;Hong, Jungsun;Jeon, Minsu;Geronimo, Franz Kevin;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.191-198
    • /
    • 2019
  • High impervious surfaces increase the surface runoff during rainfall and reduces the underground infiltration thereby leading to water cycle distortion. The distortion of water cycle causes various urban environmental problems such as urban flooding, drought, water pollutant due to non-point pollution runoff, and water ecosystem damage. Climate change intensified seasonal biases in urban rainfall and affected urban microclimate, thereby increasing the intensity and frequency of urban floods and droughts. Low impact development(LID) technology has been applied to various purposes as a technique to reduce urban environmental problems caused by water by restoring the natural water cycle in the city. This study evaluated the contribution of hydrologic characteristics and water cycle recovery after LID application using long-term monitoring results of various LID technology applied in urban areas. Based on the results, the high retention and infiltration rate of the LID facility was found to contribute significantly to peak flow reduction and runoff delay during rainfall. The average runoff reduction effect was more than 60% at the LID facility. The surface area of the LID facility area ratio(SA/CA) was evaluated as an important factor affecting peak flow reduction and runoff delay effect.

Reassessment on the Four Major Rivers Restoration Project and the Weirs Management (4대강 살리기사업의 재평가와 보의 운용방안)

  • Lee, Jong Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.225-236
    • /
    • 2021
  • The master plan for the Four Rivers Restoration Project (June 2009) was devised, the procedure of pre-environmental review (June 2009) and environmental impact assessment (Nov. 2009), and post-environmental impact survey were implemented, and 4 times audits also inspected. and finally the Ministry of Environment's Four Rivers Investigation and Evaluation Planning Committee proposed the dismantling or partial dismantling of the five weirs of the Geum River and Yeongsan River. But controversies and conflicts are still ongoing. Therefore, this study intend to reestablish the management plan for the four major rivers by reviewing and analyzing the process so far. The results are as follows. First, a cost-benefit analysis should be performed by comparing the water quality impact of weir operation and weir opening. Therefore, it is inevitably difficult to conduct cost-benefit analysis. Second, according to the results of cost-benefit analysis on the dismantling of the Geum River and the Yeongsan River, the dismantling of the weir and the regular sluice gate opening was decided. However, there is a problem in the validity of the decision to dismantle the weir because the cost-benefit analysis for maintaining the weir is not carried out. Third, looking at the change in water quality of 16 weirs before and after the Four Major Rivers Restoration Project, COD and Chl-a were generally deteriorated, and BOD, SS, T-N, and T-P improved. However, in the cost-benefit analysis related to water quality at the time of weir dismantling, only COD items were targeted. Therefore, the cost of BOD, SS, T-N, and T-P items improved after the project were not reflected in the cost-benefit analysis of dismantling weirs, so the water quality benefits were exaggerated. Fourth, in the case of Gongju weir and Juksan weir, most of them are movable weirs, so opening the weir alone can have the same effect as dismantling when the water quality deteriorates. Since the same effect can be expected, there is little need to dismantle the weirs. Fifth, in order to respond to frequent droughts and floods, it is desirable to secure the agricultural water supply capacity to the drought areas upstream of the four majorrivers by constructing a waterway connected to the weir. At present it is necessary to keep weirs rather than dismantling them.

Impact of Water Management Techniques on Agricultural Reservoir Water Supply (관개지구 물관리기법에 따른 농업용 저수지 공급량 평가)

  • Ryu, Jeong Hoon;Song, Jung Hun;Kang, Seok Man;Jang, Jung Seok;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.121-132
    • /
    • 2018
  • Along with climate change, it is reported that the extreme climate events such as severe drought could cause difficulties of agricultural water supply. To minimize such damages, it is necessary to secure the agricultural water resources by using or saving the amount of irrigation water efficiently. The objectives of this study were to develop paddy water management scenarios and to evaluate their effectiveness on water saving. Three water management scenarios (a) deep irrigation with ponding depth of 20~80 mm (control, CT), (b) no/intermittent irrigation until paddy cracks (water management A, WM-A), and (c) intermittent irrigation with ponding depth under 20 mm (water management B, WM-B) were developed. Water saving effects were analyzed using monitored data from experimental paddy fields, and agricultural water supply was analyzed on a reservoir-scale using MASA model. The observed irrigation amounts were reduced by 21 % and 17 % for WM-A and WM-B compared to CT, respectively, and mainly occurred by the increase of effective rainfall. The simulation results showed that water management scenarios could reduce irrigation by 21~51 % and total inflow by 10~24 % compared to CT. The long-term simulated water level change of agricultural reservoir resulted in the decrease of dead level occurrence for WM-A and WM-B. The study results showed that WT-A and WT-B have more benefit than CT in the aspect of agricultural reservoir water supply.

Anthropometric Measurements and Dietary patterns of North Korean Migrant Children in China (연변지역 탈북 아동 및 청소년의 체위와 식생활 양상)

  • 장남수
    • Journal of Nutrition and Health
    • /
    • v.33 no.3
    • /
    • pp.324-331
    • /
    • 2000
  • A deteriorating North Korean economy, coupled with a devastating natural disaster such as flooding and drought in recent years, brought about a severe food shortage and malnutrition problem which caused a migration of its population including young children to neighboring countries. We conducted a nutritional survey on a total of 436 children, aged 4-19 years old, who migrated to the China side of the border from July to September, 1999. The study subjects were interviewed by Korean-Chinese interviewers who were trained for anthropometric measurements and dietary surveys. Heights, weights, and chest circumference of the subjects were 70-90% of the South Korean reference values for the corresponding age and sex. Dietary intakes of the subjects were found to be extremely poor-the average number of food, mostly of plant origin, consumed in a day was 2.8, and the proportion of the subject who reported to take all three meals in a day while residing in North Korea was as low as 36.2%. Ninety five percent of the subjects had at least one clinical symptom related to malnutrition, 68.6% had 2-4 symptoms, and 15.1% had 5 or more symptoms. The results of this study provided an objective data for the first time on the severity of the food crisis and malnutrition problem that afflicted North Korean older children and adolescents as well as children aged 7 or under as previously reported elsewhere. the wasted and stunted children and youths prevailing in North Korea could exert a negative influence on the country's health and economy. More researches are needed in the future to investigate on the impact of malnutrition in North Korean children on the country's social, economic, and cultural state as well as on the health and nutrition situation.

  • PDF

Production, Nutritional Quality and In vitro Methane Production from Andropogon gayanus Grass Harvested at Different Maturities and Preserved as Hay or Silage

  • Ribeiro, G.O. Jr.;Teixeira, A.M.;Velasco, F.O.;Faria, W.G. Junior;Pereira, L.G.R.;Chaves, A.V.;Goncalves, L.C.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.330-341
    • /
    • 2014
  • Andropogon gayanus is an important grass due to its high biomass production, drought tolerance and favorable growth on low fertility acidic soils. Currently, there is little research on the impact of growth stage on the nutritional quality or the degree of $CH_4$ production that may arise from this forage during ruminal fermentation. The objectives of this study were to determine the effects of regrowth stage of A. gayanus on its chemical composition, in vitro production of gas and CH4, as well as in vitro dry matter (DM) digestibility when grown under tropical Brazilian conditions and conserved as hay or as silage. The nutritional value of A. gayanus grass declined with increasing maturity; however digestible DM yield linearly increased. After 112 d of regrowth, A. gayanus produced higher quality silage (higher lactate and lower pH and butyrate content) and higher DM yield. However, the low levels of crude protein at this time would make protein supplementation a necessity for proper rumen fermentation. No differences in $CH_4$ kinetic parameters were found with advancing maturity or preservation method (hay or silage).