DOI QR코드

DOI QR Code

A Method to Estimate the Cell Based Sustainable Development Yield of Groundwater

셀기반 지하수 개발가능량 산정기법

  • Chung, Il-Moon (Water Resources Research Div. Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Nam Won (Water Resources Research Div. Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jeongwoo (Water Resources Research Div. Korea Institute of Civil Engineering and Building Technology) ;
  • Na, Hanna (Water Resources Research Div. Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Youn-Jung (Water Resources Research Div. Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Seunghyuk (Water Resources Research Div. Korea Institute of Civil Engineering and Building Technology)
  • 정일문 (한국건설기술연구원, 수자원연구실) ;
  • 김남원 (한국건설기술연구원, 수자원연구실) ;
  • 이정우 (한국건설기술연구원, 수자원연구실) ;
  • 나한나 (한국건설기술연구원, 수자원연구실) ;
  • 김윤정 (한국건설기술연구원, 수자원연구실) ;
  • 박승혁 (한국건설기술연구원, 수자원연구실)
  • Received : 2014.09.29
  • Accepted : 2014.11.15
  • Published : 2014.12.28

Abstract

Sustaiable development yield of groundwater in Korea has been determined according to 10 year drought frequency of groundwater recharge in the standard mid-sized watershed or relatively large area of district. Therefore, the evaluation of groundwater impact in a small watershed is hard to apply. Fot this purpose, a novel approach to estimate cell based sustainable development yield of groundwater (SDYG) is suggested and applied to Gyeongju region. Cell based groundwater recharge is computed using hydrological component analysis using the SWAT-MODFLOW which is an integrated surface water-groundwater model. To estimate the potential amount of groundwater development, the existing method which uses 10 year drought frequency rainfall multiplied by recharge coefficient is adopted. Cell based SDYGs are computed and summed for 143 sub-watersheds and administrative districts. When these SDYGs are combined with groundwater usage data, the groundwater usage rate (total usage / SDYG) shows wide local variations (7.1~108.8%) which are unseen when average rate (24%) is only evaluated. Also, it is expected that additional SDYGs in any small district could be estimated.

현재 우리나라의 지하수 개발가능량은 10년빈도 갈수시 함양량으로 결정되며 일정면적 이상의 수문학적 유역 또는 행정구역별로 넓게 구분되어 있어 소규모 유역의 지하수 영향평가에 적용하기가 어려운 면이 있다. 이에 본 연구에서는 셀기반의 지하수 개발가능량을 추정하는 새로운 기법을 경주지역에 대해 제시하였다. 이를 위해 지표수-지하수 통합 수문해석 모형인 SWAT-MODFLOW를 이용하여 셀기반 지하수 함양량을 산정하였다. 지하수 개발가능량을 결정하는 기준은 10년빈도 갈수시 강수량에 함양계수를 곱하여 추정하는 기존방식을 준용했다. 격자별 개발가능량을 산정한 후에는 목적에 따라 경주지역에서 143개로 세분화된 소유역별, 읍면리등 행정구역별로 개발가능량을 제시할 수 있었다. 지하수 이용량과 개발가능량을 연계하여 분석한 결과 경주시 전체 이용율은 평균 24%의 비교적 양호한 이용률을 보였으나 지역적으로는 7.1~108.8%까지 편차가 큰 이용현황을 보이는 것을 쉽게 확인할 수 있었다. 또한 임의의 시군구에서 지역별 추가 개발가능량도 평가할 수 있어 그 활용성이 기대된다.

Keywords

References

  1. Arnold, J.G., Allen, P.M. and Bernhardt, G. (1993). A comprehensive surface-groundwater flow model. Journal of Hydrology, v.142, p.47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  2. Banks, H.O. (1953). Utilization of underground storage reservoirs. Transactions, American Society of Civil Engineers, v.118, p.220-234
  3. Chung, I.M. and Kim, N.W. (2011). Method of advancing groundwater management in Korea. Magazine of Korea Water Resources Association, v.44, n.2, p.10-14.
  4. Chung, I.M., Kim, N.W., Lee, J.W. and Lee, J.E. (2014). A method of estimating conservative potential amount of groundwater, J. of KSCE, 34(6). 1797-1806. https://doi.org/10.12652/Ksce.2014.34.6.1797
  5. Conkling, H. (1946). Utilization of groundwater storage in stream system development. Transactions, American Society of Civil Engineers, v.3, p.275-305.
  6. Kim, N.W., Chung, I.M., Won, Y.S. and Arnold, J.G. (2008). Development and application of the integrated SWAT-MODFLOW model, J. of Hydrology, v.356, p. 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  7. Lee, C.H. (1915). The determination of safe yield of underground reservoirs of the closed basin type. Transactions, American Society of Civil Engineers, v.78, p.148-151.
  8. McDonald, M.G. and Harbaugh, A.W. (1988). A Modular Three-Dimensional Finite-Difference Ground-water Flow Model. U.S. Geological Survey Techniques in Water Resources Investigations Report Book 6, Chapter A1, p.528.
  9. Meinzer, O.E. (1923). Outline of ground-water hydrology, with definitions. USGS Water-Supply Paper 494. Washington, D.C.: U.S. Government Printing Office.
  10. Ministry of Construction and Transporation. (2002). Report on Basic Plan of Groundwater Management.
  11. Ministry of Construction and Transportation (MOCT). (2007). Report on the Basic Groundwater Management and Planning. 153p.
  12. Ministry of Land, Transport and Maritime Affairs. (2012). Report on Basic Investigation of Groundwater in Gyeongju City.
  13. Sophocleous, M.A. (1998). On the elusive concept of safe yield and the response of interconnected stream-aquifer systems to development; in, Perspectives on Sustainable Development of Water Resources in Kansas, M. A. Sophocleous, ed.: Kansas Geological Survey, Bulletin, v.239, p.6-85.