• Title/Summary/Keyword: Drone Detection

Search Result 182, Processing Time 0.027 seconds

Automated Measurement Method for Construction Errors of Reinforced Concrete Pile Foundation Using a Drones (드론을 활용한 철근콘크리트 말뚝기초 시공 오차 자동화 측정 방법)

  • Seong, Hyeonwoo;Kim, Jinho;Kang, HyunWook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.45-53
    • /
    • 2022
  • The purpose of this study is to present a model for analyzing construction errors of reinforced concrete pile foundations using drones. First, a drone is used to obtain an aerial image of the construction site, and an orthomosaic image is generated based on those images. Then, the circular pile foundation is automatically recognized from the orthomosaic image by using the Hough transform circle detection method. Finally, the distance is calculated based on the the center point of the reinforced concrete pile foundation in the overlapped data. As a case study, the proposed concrete concrete pile foundation construction quality control model was applied to the real construction site in Incheon to evaluate the proposed model.

Implementation of YOLO based Missing Person Search Al Application System (YOLO 기반 실종자 수색 AI 응용 시스템 구현)

  • Ha Yeon Km;Jong Hoon Kim;Se Hoon Jung;Chun Bo Sim
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.159-170
    • /
    • 2023
  • It takes a lot of time and manpower to search for the missing. As part of the solution, a missing person search AI system was implemented using a YOLO-based model. In order to train object detection models, the model was learned by collecting recognition images (road fixation) of drone mobile objects from AI-Hub. Additional mountainous terrain datasets were also collected to evaluate performance in training datasets and other environments. In order to optimize the missing person search AI system, performance evaluation based on model size and hyperparameters and additional performance evaluation for concerns about overfitting were conducted. As a result of performance evaluation, it was confirmed that the YOLOv5-L model showed excellent performance, and the performance of the model was further improved by applying data augmentation techniques. Since then, the web service has been applied with the YOLOv5-L model that applies data augmentation techniques to increase the efficiency of searching for missing people.

A Study on Orthogonal Image Detection Precision Improvement Using Data of Dead Pine Trees Extracted by Period Based on U-Net model (U-Net 모델에 기반한 기간별 추출 소나무 고사목 데이터를 이용한 정사영상 탐지 정밀도 향상 연구)

  • Kim, Sung Hun;Kwon, Ki Wook;Kim, Jun Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.251-260
    • /
    • 2022
  • Although the number of trees affected by pine wilt disease is decreasing, the affected area is expanding across the country. Recently, with the development of deep learning technology, it is being rapidly applied to the detection study of pine wilt nematodes and dead trees. The purpose of this study is to efficiently acquire deep learning training data and acquire accurate true values to further improve the detection ability of U-Net models through learning. To achieve this purpose, by using a filtering method applying a step-by-step deep learning algorithm the ambiguous analysis basis of the deep learning model is minimized, enabling efficient analysis and judgment. As a result of the analysis the U-Net model using the true values analyzed by period in the detection and performance improvement of dead pine trees of wilt nematode using the U-Net algorithm had a recall rate of -0.5%p than the U-Net model using the previously provided true values, precision was 7.6%p and F-1 score was 4.1%p. In the future, it is judged that there is a possibility to increase the precision of wilt detection by applying various filtering techniques, and it is judged that the drone surveillance method using drone orthographic images and artificial intelligence can be used in the pine wilt nematode disaster prevention project.

Analysis of the Effect of Learned Image Scale and Season on Accuracy in Vehicle Detection by Mask R-CNN (Mask R-CNN에 의한 자동차 탐지에서 학습 영상 화면 축척과 촬영계절이 정확도에 미치는 영향 분석)

  • Choi, Jooyoung;Won, Taeyeon;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • In order to improve the accuracy of the deep learning object detection technique, the effect of magnification rate conditions and seasonal factors on detection accuracy in aerial photographs and drone images was analyzed through experiments. Among the deep learning object detection techniques, Mask R-CNN, which shows fast learning speed and high accuracy, was used to detect the vehicle to be detected in pixel units. Through Seoul's aerial photo service, learning images were captured at different screen magnifications, and the accuracy was analyzed by learning each. According to the experimental results, the higher the magnification level, the higher the mAP average to 60%, 67%, and 75%. When the magnification rates of train and test data of the data set were alternately arranged, low magnification data was arranged as train data, and high magnification data was arranged as test data, showing a difference of more than 20% compared to the opposite case. And in the case of drone images with a seasonal difference with a time difference of 4 months, the results of learning the image data at the same period showed high accuracy with an average of 93%, confirming that seasonal differences also affect learning.

A Real Time Quadrotor Autonomous Navigation and Remote Control Method (실시간 쿼드로터 자율주행과 원격제어 기법)

  • Son, Byung-Rak;Kang, Seok-Min;Lee, Hyun;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.205-212
    • /
    • 2013
  • In recent, the demand of Unmanned Aerial Vehicles (UAVs) that can autonomous navigation and remote control has been increased in military, civil and commercial field. Particularly, existing researches focused on autonomous navigation method based on vanish point and remote control method based on event processing in indoor environments. However, the existing methods have some problems. For instance, a detected vanish point in intersection point has too much detection errors. In addition, the delay is increased in existing remote control system for processing images in real time. Thus, we propose improved vanish point algorithm by removing detection errors in intersection point. We also develop a remote control system with android platform by separating flying control and image process. Finally, we compare the proposed methods with existing methods to show the improvement of our approaches.

Anomaly Detection Method for Drone Navigation System Based on Deep Neural Network

  • Seo, Seong-Hun;Jung, Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.109-117
    • /
    • 2022
  • This paper proposes a method for detecting flight anomalies of drones through the difference between the command of flight controller (FC) and the navigation solution. If the drones make a flight normally, control errors generated by the difference between the desired control command of FC and the navigation solution should converge to zero. However, there is a risk of sudden change or divergence of control errors when the FC control feedback loop preset for the normal flight encounters interferences such as strong winds or navigation sensor abnormalities. In this paper, we propose the method with a deep neural network model that predicts the control error in the normal flight so that the abnormal flight state can be detected. The performance of proposed method was evaluated using the real-world flight data. The results showed that the method effectively detects anomalies in various situation.

Trends in Intelligent Radar Technology (지능형 레이더 기술 동향)

  • Koo, B.T.;Park, P.J.;Han, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.12-21
    • /
    • 2021
  • Intelligent radar sensors are applied in many industries, such as the automobile, aerospace, and defense industries (for security and surveillance), and for traffic monitoring and management as well as environmental and weather monitoring. Furthermore, they are used in smart cities, homes, and buildings, wherein intelligent motion sensing is required in daily life. It is mentioned that it is being used. In addition, ETRI introduces a phased array-based intelligent radar for drone detection and a human name detection radar technology based on which humans can be detected in case of a disaster.

Road Crack Detection based on Object Detection Algorithm using Unmanned Aerial Vehicle Image (드론영상을 이용한 물체탐지알고리즘 기반 도로균열탐지)

  • Kim, Jeong Min;Hyeon, Se Gwon;Chae, Jung Hwan;Do, Myung Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.155-163
    • /
    • 2019
  • This paper proposes a new methodology to recognize cracks on asphalt road surfaces using the image data obtained with drones. The target section was Yuseong-daero, the main highway of Daejeon. Furthermore, two object detection algorithms, such as Tiny-YOLO-V2 and Faster-RCNN, were used to recognize cracks on road surfaces, classify the crack types, and compare the experimental results. As a result, mean average precision of Faster-RCNN and Tiny-YOLO-V2 was 71% and 33%, respectively. The Faster-RCNN algorithm, 2Stage Detection, showed better performance in identifying and separating road surface cracks than the Yolo algorithm, 1Stage Detection. In the future, it will be possible to prepare a plan for building an infrastructure asset-management system using drones and AI crack detection systems. An efficient and economical road-maintenance decision-support system will be established and an operating environment will be produced.

An Efficient Edge Detection Technique for Separating Regions in an Image (영상내에서 영역 구분을 위한 효율적인 경계검출 기법)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.359-360
    • /
    • 2021
  • The pixel-based processing of an image refers to a process of converting a value of one pixel only depending on the value of the current pixel, regardless of the value of another pixel. Pixel-based processing is used as the most basic operation in many fields such as image conversion, image enhancement, and image synthesis. There are processing methods such as arithmetic operation, histogram smoothing, and contrast stretching. In this paper, in order to clearly distinguish the tidal flat region from the tidal flat image of the west coast taken with a drone, we seek a method to find an efficient outline using pixel-based processing in the boundary detection part of the pre-processing process.

  • PDF

Development of Deep Learning-based Land Monitoring Web Service (딥러닝 기반의 국토모니터링 웹 서비스 개발)

  • In-Hak Kong;Dong-Hoon Jeong;Gu-Ha Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.275-284
    • /
    • 2023
  • Land monitoring involves systematically understanding changes in land use, leveraging spatial information such as satellite imagery and aerial photographs. Recently, the integration of deep learning technologies, notably object detection and semantic segmentation, into land monitoring has spurred active research. This study developed a web service to facilitate such integrations, allowing users to analyze aerial and drone images using CNN models. The web service architecture comprises AI, WEB/WAS, and DB servers and employs three primary deep learning models: DeepLab V3, YOLO, and Rotated Mask R-CNN. Specifically, YOLO offers rapid detection capabilities, Rotated Mask R-CNN excels in detecting rotated objects, while DeepLab V3 provides pixel-wise image classification. The performance of these models fluctuates depending on the quantity and quality of the training data. Anticipated to be integrated into the LX Corporation's operational network and the Land-XI system, this service is expected to enhance the accuracy and efficiency of land monitoring.