• Title/Summary/Keyword: Driving trajectory

Search Result 122, Processing Time 0.022 seconds

Analysis for Traffic Accidents against Car-Pedestrian on Simulation (시뮬레이션을 통한 차대 보행자의 교통사고 분석)

  • Chae, Hee-Hong;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.115-121
    • /
    • 2012
  • In spite of serious injuries caused by traffic accidents of car-pedestrian, the dispute is constantly occurring and economic losses and mental suffering is escalating since the cause of accidents is not scientifically identified. This study reviewed vehicle dynamics, driving dynamics, collision dynamics, traffic and road engineering for traffic accidents analysis based on traffic accidents related physically objective evidence and analysed the cause of accidents by getting results which applied vehicle initial collision velocity before collision, processing trajectory, collision stance, vehicle velocity before & after collision and parameter by using PC-Crash program. I found that skid mark and collision velocity of car-pedestrian had the error of 11.2%, 2,27% compared to theoretical values.

A Study on Hand-signal Recognition System in 3-dimensional Space (3차원 공간상의 수신호 인식 시스템에 대한 연구)

  • 장효영;김대진;김정배;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.103-114
    • /
    • 2004
  • This paper deals with a system that is capable of recognizing hand-signals in 3-dimensional space. The system uses 2 color cameras as input devices. Vision-based gesture recognition system is known to be user-friendly because of its contact-free characteristic. But as with other applications using a camera as an input device, there are difficulties under complex background and varying illumination. In order to detect hand region robustly from a input image under various conditions without any special gloves or markers, the paper uses previous position information and adaptive hand color model. The paper defines a hand-signal as a combination of two basic elements such as 'hand pose' and 'hand trajectory'. As an extensive classification method for hand pose, the paper proposes 2-stage classification method by using 'small group concept'. Also, the paper suggests a complementary feature selection method from images from two color cameras. We verified our method with a hand-signal application to our driving simulator.

Improvement of Muzzle Localization Using Linear Microphone Array (선형마이크로폰 어레이를 이용한 총구 거리 추정 개선 방법)

  • Jung, Seong-Woo;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • In this paper, we used the sound of gunshots recorded by multiple microphones to increase the accuracy of the calculation of the distance between sniper and the microphone array. This method is crucial for achieving military objectives. Gunshots are comprised of the explosion of driving gas from the muzzle and the supersonic shock wave from the flying bullet. The original distance calculation method compares the time difference of arrival and angle of incidence to estimate the sniper's location. The disadvantage of this method is that when the angles of incidence coincide the margin of error increases, to solve this problem we suggest a new method using the characteristic changes of the shock wave with the increase of perpendicular distance between the microphone and the trajectory of the bullet. This theory is verified by experiments.

Feedback Shift Controller Design of Automatic Transmission for Tractors (트랙터 자동변속기 되먹임 변속 제어기 설계)

  • Jung, Gyu Hong;Jung, Chang Do;Park, Se Ha
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Nowadays automatic transmission equipped vehicles prevail in construction and agricultural equipment due to their convenience in driving and operation. Though domestic vehicle manufacturers install imported electronic controlled transmissions at present, overseas products will be replaced by domestic ones in the near future owing to development efforts over the past 10 years. For passenger cars, there are many kinds of shift control algorithms that enhance the shift quality such as feedback and learning control. However, since shift control technologies for heavy duty vehicles are not highly developed, it is possible to improve the shift quality with an organized control method. A feedback control algorithm for neutral-into-gear shift, which is enabled during the inertia phase for the master clutch slip speed to track the slip speed reference, is proposed based on the power transmission structure of TH100. The performance of the feedback shift control is verified by a vehicle test which is implemented with firmware embedded TCU. As the master clutch engages along the predetermined speed trajectory, it can be concluded that the shift quality can be managed by a shift time control parameter. By extending the proposed feedback algorithm for neutral-into-gear shift to gear change and shuttle shift, it is expected that the quality of the shift can be improved.

Operational Characteristics of a Domestic Commercial Semi-automatic Vegetable Transplanter (상용 국산 반자동 채소 정식기의 작동 특성 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.127-138
    • /
    • 2018
  • In this study, the operational characteristics of a domestic vegetable transplanter were investigated. The main functional components and power path of the tranplanter were analyzed. The link structure of transplanting device waskinematically analyzed, and 3D modeling and dynamic simulation were performed. Based on this analysis, the trajectory of the bottom end of the transplanting hopper was analyzed. Also, the plant spacing according to the engine speed and the shifting stage of transplanting transmission was analyzed and verified by field test. As main results of this study, the transplanting device is one degree of freedom(DOF) 4-bar link type mechanism which comprises 10 links and 13 rotating joints. The transplanting hopper plants seedlings in a vertical direction while maintaining a constant posture by the links of transplanting device. The power is transmitted to both the driving part and transplanting part from the engine, and the maximum and minimum plant spacing of the transplanting device were 428.97 mm and 261.20 mm.

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

The Estimation of Collision Speed at the Intersection using Simulation (시뮬레이션을 통한 교차로 충돌 속도 추정)

  • Han, Chang-Pyoung;Cheon, Jeong-Hwan;Choi, Hong Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.514-521
    • /
    • 2021
  • When calculating an intersection collision speed using a formula, it is very difficult to grasp the degree of deceleration of a vehicle after the collision unless there is road surface trace in the entire section where each vehicle moved from the point of collision to their final positions after the collision. A vehicle's motion trajectory shows an irregular curve after a collision due to the effects of inertia based on the driving characteristics of the vehicle, the eccentric force according to the collision site, and the collision speed. Therefore, it is very important to set the appropriate departure angle after a collision for accurate collision speed analysis. In this study, based on experimental collision data using a computer simulation (PC-Crash), the correlation between an appropriate vehicle departure angle and the post-collision speed was analyzed, and then, a regression analysis model was derived. Through this, we propose a method to calculate collision speed by applying only the vehicle departure angle in some types of collisions for traffic accidents at intersections.

A Study on Mobile Robot for Posture Control of Flexible Structures Using PI Algorithm

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.9-14
    • /
    • 2022
  • In this study, we propose a method for moving a device such as a flexible air sculpture while stably maintaining the user's desired posture. To accomplish this, a robot system with a structure of a mobile robot capable of running according to a given trajectory was studied by applying the PI algorithm and horizontal maintenance posture control using IMU. The air sculptures used in this study often use thin strings in a fixed posture. Another method is to put a load on the center of gravity to maintain the posture, and it is a system with flexibility because it uses air pressure. It is expected that these structures can achieve various results by combining flexible structures and mobile robots through the convergence process of digital sensor technology. In this study, posture control was performed by fusion of the driving technology of AGV(Automatic Guided Vehicle),, a field of robot, and technologies applying various sensors. For verification, the given performance evaluation was performed through an accredited certification test, and its validity was verified through an experiment.

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability (실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어)

  • Hong, Hyosung;Han, Jong-Boo;Song, Hajun;Jung, Samuel;Kim, Sung-Soo;Yoo, Wan Suk;Won, Mooncheol;Joo, Sanghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.599-605
    • /
    • 2017
  • For an unmanned vehicle to be driven on the off-road terrain, it is necessary to consider the vehicle's stability. This paper suggests a path tracking controller for simulation of real-time vehicle stability analysis. The path tracking controller uses the preview distance to track the given trajectory. The disturbance moment is estimated using the yaw moment observer, and this information is used for compensation in the yaw moment control. On a curved path, the vehicle's desired velocity is determined from the curvature of the path. Because the vehicle is equipped with six independent motor driven wheels, the driving torques are distributed on all the wheels. The effectiveness of the path tracking controller is verified using ADAMS/MATLAB co-simulation.

Operational Characteristics of a Cam-type Vegetable Transplanter and Mechanism of a Transplanting Device (캠방식 채소 정식기의 작동 특성 및 식부장치 작동 메커니즘 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.113-124
    • /
    • 2019
  • In this study, the operational characteristics of a cam-type vegetable transplanter which usually used in domestic was analyzed and operating mechanism of a transplanting device was analyzed. The main components and power path of the transplanter were analyzed. The maximum and minimum control cycles according to the moving speed and the plant spacing were analyzed. 3D modeling and simulation were performed to derive the trajectory of the bottom end of the transplanting hopper and the plant spacing at the each operating condition. The simulation results were verified by the field tests. As main findings of this study, the transplanting device has one degree of freedom (DOF) which consist of 13 links, 17 rotating joints and 1 half joint, and each part has composite structure with cam and links. By continuous and repetitive motion of the structures of transplanting device, the transplanting hopper plants the seedling in the ground with a vertical direction, and the seedling was planted stably. The power is transmitted to the driving part and transplanting device from the engine, and the maximum and minimum plant spacing of the transplanting device were about 900 mm and 350 mm, respectively.