• Title/Summary/Keyword: Driving strategy

Search Result 355, Processing Time 0.023 seconds

A Study of The ROK's Defense Exporting Strategies (한국의 방산수출 전략 연구)

  • Lee, Pil-Jung
    • Journal of National Security and Military Science
    • /
    • s.9
    • /
    • pp.141-190
    • /
    • 2011
  • Defense industry as 'a new dynamics of economic growth' policy implies driving policy of defense products' export. The purpose of this study is to suggest suitable strategies to meet with such policy in terms of region and individual nation. The strategies towards advanced region are joint sale strategy for the third countries, extension strategy of trade-off and development strategy of products to exploit niche markets. The strategies towards non-advanced regions are package strategy including exchange of economic development know-how, strengthening strategy of relationships to leading groups in national decision-making processes, exploit strategy of sales market through transfer discard and surplus equipments to other nations, government to government sale strategy towards countries holding low leveled equipment maintaining and management abilities. Finally, successive strategies require leaders' will, active sales diplomacy and active international cooperations of defense industry.

  • PDF

An Fuzzy-based Risk Reasoning Driving Strategy on VANET

  • Lee, Byung-Kwan;Jeong, Yi-Na;Jeong, Eun-Hee
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.57-67
    • /
    • 2015
  • This paper proposes an Fuzzy-based Risk Reasoning Driving Strategy on VANET. Its first reasoning phase consists of a WC_risk reasoning that reasons the risk by using limited road factors such as current weather, density, accident, and construction, a DR_risk reasoning that reasons the risk by combining the driving resistance with the weight value suitable for the environment of highways and national roads, a DS_risk reasoning that judges the collision risk by using the travel direction, speed. and distance of vehicles and pedestrians, and a Total_risk reasoning that computes a final risk by using the three above-mentioned reasoning. Its second speed reduction proposal phase decides the reduction ratio according to the result of Total_risk and the reduction ratio by comparing the regulation speed of road to current vehicle's speed. Its third risk notification phase works in case current driving speed exceeds regulation speed or in case the Total_risk is higher than AV(Average Value). The Risk Notification Phase informs rear vehicles or pedestrians around of a risk according to drivers's response. If drivers use a brake according to the proposed speed reduction, the precedent vehicles transfers Risk Notification Messages to rear vehicles. If they don't use a brake, a current driving vehicle transfers a Risk Message to pedestrians. Therefore, this paper not only prevents collision accident beforehand by reasoning the risk happening to pedestrians and vehicles but also decreases the loss of various resources by reducing traffic jam.

Design of High Capacity Rectifier by Parallel Driving of MOSFET (MOSFET 병렬 구동을 이용한 대용량 정류기 구현)

  • Sun, Duk-Han;Cho, Nae-Su;Kim, Woo-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.227-233
    • /
    • 2007
  • In case of design of a rectifier to supply high current, To select switching frequency of semiconductor switches affect absolutely the design of the LC filter value in an power conversion circuit. The conventional rectifier by using MOSFET is no use in high current equipments because of small drain-source current. To solve this problem, this paper proposes to design of high capacity rectifier by parallel driving of MOSFET in the single half bridge DC-DC converter. This method can be able to develop high current rectifier by distributed drain-source current. The proposed scheme is able to expect a decrease in size, weight and cost of production by decreasing the LC filter value and increasing maximumly the switching frequency. The validity of the proposed parallel driving strategy is verified through computer-aided simulations and experimental results.

  • PDF

An Improvement of Sensorless Driving Performance for Brushless DC Motor with Trapezoidal Back EMF (제형파 역기전력을 갖는 브러시리스 DC모터의 센서리스 운전특성 향상)

  • 우혁재;송명현;박규남;김경민;정회범
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.582-588
    • /
    • 2002
  • This paper presents a efficient sensorless driving strategy for brushless dc motor(BLDCM). By varying PWM switching frequency(4KHz, 6KHz, 8KHz) properly according to the rotating speed, the improvement of the efficiency and the operating characteristics through the wide speed are obtained.. The experimental results show that the proposed method can efficiently improve the sensorless driving performance for BLDCM with trapezoidal back emf.

DESIGN AND EVALUATION OF INTELIGENT VEHICLE CRUISE CONTROL SYSTEMS USING A VEHICLE SIMULATOR

  • Han, D.H.;Yi, K.S.;Lee, J.K.;Kim, B.S.;Yi, S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.377-383
    • /
    • 2006
  • This paper presents evaluation and comparisons of manual driving and driving with intelligent cruise control(ICC) systems. An intelligent vehicle cruise control strategy has been designed to achieve natural vehicle behavior of the controlled vehicle that would make human driver feel comfortable and therefore would increase driver acceptance. The evaluation and comparisons of the ICC and manual driving have been conducted using real-world vehicle driving data and an ICC vehicle simulator.

Uniqueness of an Optimal Run-up for a Steep Incline of a Train

  • Vu, Xuan
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.70-79
    • /
    • 2009
  • An optimal driving strategy of a train in a long journey on a nonsteep track has four phases: an initial power phase, a long hold speed phase, a coast phase and a final brake phase. The majority of the journey is speed holding. On a track with steep gradients, it becomes necessary to vary the strategy around steep sections of track because it is not possible to hold a constant steep on steep track. Instead we must interrupt the speed hold phase with a power phase. The aim of this paper is to show that there is a unique power phase that satisfies the necessary conditions for an optimal journey. The problem is developed and solved for various cases, from a simple single steep gradient to a complicated multiple steep gradient section. For each case, we construct a set of new conditions for optimality of the power phase that minimises the energy used during the power phase subject to a weighted time penalty. We then use the new necessary conditions to develop a calculate scheme for finding an optimal power phase for a steep incline. We also present an example to confirm the uniqueness of an optimal power phase.

  • PDF

A Study for AGV Steering Control using Evolution Strategy (진화전략 알고리즘을 이용한 AGV 조향제어에 관한 연구)

  • 이진우;손주한;최성욱;이영진;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.149-149
    • /
    • 2000
  • We experimented on AGV driving test with color CCD camera which is setup on it. This paper can be divided into two parts. One is image processing part to measure the condition of the guideline and AGV. The other is part that obtains the reference steering angle through using the image processing parts. First, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, AGV knows the driving conditions of AGV. After then using of those information, AGV calculates the reference steering angle changed by the speed of AGV. In the case of low speed, it focuses on the left/right error values of the guide line. As increasing of the speed of AGV, it focuses on the slop of guide line. Lastly, we are to model the above descriptions as the type of PID controller and regulate the coefficient value of it the speed of AGV.

  • PDF

Multi-step Modulation Techniques in PWM Inverter for a Variable-Speed Induction Motor Driving (가변속 유도전동기의 구동을 위한 PWM인버터의 다단변조 기법)

  • 박충규;정헌상;김국진;정을기;손진근
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.32-41
    • /
    • 1992
  • In this paper, an advanced Pulse Width Modulation Inverter strategy for driving a variable-speed induction motor is introduced. A switching pattern making use of the near-proportionality of voltage and frequency in AC machines operating with constant flux was computed. At low magnitudes and ow frequencies of the fundamental, many more harmonics are eliminated than at high magnitudes and frequencies. In order to keep the inverter switching frequency constant over the output frequency range, the chopping frequency is diminished as the frequency of the fundamental increases. Using these modulation strategy, the harmonics components of PWM inverter are efficiently eliminated.

  • PDF

OPTIMAL TORQUE MANAGEMENT STRATEGY FOR A PARALLEL HYDRAULIC HYBRID VEHICLE

  • Sun, H.;Jiang, J.H.;Wang, X.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.791-798
    • /
    • 2007
  • The hydraulic hybrid vehicle(HHV) is an application of hydrostatic transmission technology to improve vehicle fuel economy and emissions. A relatively lower energy density of hydraulic accumulator and complicated coordinating operations between two power sources require a special energy management strategy to maximize the fuel saving potential. This paper presents a new type of configuration for parallel HHV to minimize the disadvantages of the hydraulic accumulator, as well as a methodology for developing an energy management strategy tailored specially for PHHV. Based on an analysis of the optimal energy distribution between two power sources over a representative urban driving cycle with a Dynamic Programming(DP) algorithm, a fuzzy-based optimal torque management strategy is designed and developed to control the torque distribution. Simulation results demonstrates that the optimal torque management strategy maximizes the advantages of this hybrid type of configuration, and the high power density characteristics of hydraulic technology effectively improve the robustness of the energy management strategy and fuel economy of the PHHV.

Driving of Inverted Pendulum Robot Using Wheel Rolling Motion (바퀴구름운동을 고려한 역진자 로봇의 주행)

  • Lee, Jun-Ho;Park, Chi-Sung;Hwang, Jong-Myung;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.