• Title/Summary/Keyword: Driver Assistance

Search Result 228, Processing Time 0.036 seconds

A Study on Traffic Light Detection (TLD) as an Advanced Driver Assistance System (ADAS) for Elderly Drivers

  • Roslan, Zhafri Hariz;Cho, Myeon-gyun
    • International Journal of Contents
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2018
  • In this paper, we propose an efficient traffic light detection (TLD) method as an advanced driver assistance system (ADAS) for elderly drivers. Since an increase in traffic accidents is associated with the aging population and an increase in elderly drivers causes a serious social problem, the provision of ADAS for older drivers via TLD is becoming a necessary(Ed: verify word choice: necessary?) public service. Therefore, we propose an economical TLD method that can be implemented with a simple black box (built in camera) and a smartphone in the near future. The system utilizes a color pre-processing method to differentiate between the stop and go signals. A mathematical morphology algorithm is used to further enhance the traffic light detection and a circular Hough transform is utilized to detect the traffic light correctly. From the simulation results of the computer vision and image processing based on a proposed algorithm on Matlab, we found that the proposed TLD method can detect the stop and go signals from the traffic lights not only in daytime, but also at night. In the future, it will be possible to reduce the traffic accident rate by recognizing the traffic signal and informing the elderly of how to drive by voice.

Study on the Direction for Event Data Recorders of Autonomous Vehicle through the Analysis of Traffic Accidents in Korea (교통사고 사례를 통한 자율차 사고기록장치 방향성 연구)

  • Kang, Heejin;Park, Giok;Lee, Yospeh;So, Jaehyun;Yun, Ilsoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.60-65
    • /
    • 2021
  • The event data recorders (EDR) have been used as a device to help understand traffic accidents. With the recent development of autonomous vehicle (AV), it has become important to prepare the new EDR for AV. Therefore, the purpose of this study is to propose the direction of EDR-AV recording. First of all, the recent EDR data elements and the data elements of AV under discussion at UNECE WP29 EDR/DSSAD (Data Storage System for Automated Driving) were analyzed. The consumer complaint database in Motor Vehicle Recall Center in Korea was analyzed in order to utilize cases of domestic traffic accidents related to advanced driver assistance systems (ADAS). Consequently, problems with existing EDR were identified through unclear accident cases related to ADAS. In the future, it was proposed to record images in which the ADAS perception systems recognize the surroundings of the accident site as an EDR-AV recording item.

Vision-sensor-based Drivable Area Detection Technique for Environments with Changes in Road Elevation and Vegetation (도로의 높낮이 변화와 초목이 존재하는 환경에서의 비전 센서 기반)

  • Lee, Sangjae;Hyun, Jongkil;Kwon, Yeon Soo;Shim, Jae Hoon;Moon, Byungin
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.94-100
    • /
    • 2019
  • Drivable area detection is a major task in advanced driver assistance systems. For drivable area detection, several studies have proposed vision-sensor-based approaches. However, conventional drivable area detection methods that use vision sensors are not suitable for environments with changes in road elevation. In addition, if the boundary between the road and vegetation is not clear, judging a vegetation area as a drivable area becomes a problem. Therefore, this study proposes an accurate method of detecting drivable areas in environments in which road elevations change and vegetation exists. Experimental results show that when compared to the conventional method, the proposed method improves the average accuracy and recall of drivable area detection on the KITTI vision benchmark suite by 3.42%p and 8.37%p, respectively. In addition, when the proposed vegetation area removal method is applied, the average accuracy and recall are further improved by 6.43%p and 9.68%p, respectively.

Lane Departure Warning System using Deep Learning (딥러닝을 이용한 차로이탈 경고 시스템)

  • Choi, Seungwan;Lee, Keontae;Kim, Kwangsoo;Kwak, Sooyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.25-31
    • /
    • 2019
  • As artificial intelligence technology has been developed rapidly, many researchers who are interested in next-generation vehicles have been studying on applying the artificial intelligence technology to advanced driver assistance systems (ADAS). In this paper, a method of applying deep learning algorithm to the lane departure warning system which is one of the main components of the ADAS was proposed. The performance of the proposed method was evaluated by taking a comparative experiments with the existing algorithm which is based on the line detection using image processing techniques. The experiments were carried out for two different driving situations with image databases for driving on a highway and on the urban streets. The experimental results showed that the proposed system has higher accuracy and precision than the existing method under both situations.

Traffic Accident Type Classification and Characteristic Analysis Research to Develop Autonomous Vehicle Accident Investigation Guidelines Using the National Forensic Service Data Base (국과수 데이터베이스를 활용하여 자율주행차 사고조사 가이드라인 개발을 위한 교통사고 유형 분류 및 특성 분석 연구)

  • Byungdeok In;Dayoung Park;Jongjin Park
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.35-41
    • /
    • 2024
  • In order to verify autonomous driving scenarios and safety, a lot of driving and accident data is needed, so various organizations are conducting classification and analysis of traffic accident types. In this study, it was determined that accident recording devices such as EDR (Event Data Recorder) and DSSAD (Data Storage System for Automated Driving) would become an objective standard for analyzing the causes of autonomous vehicle accidents, and traffic accidents that occurred from 2015 to 2020 were analyzed. Using the database system of IGLAD (Initiative for the Global Harmonization of Accident Data), approximately 360 accident data of EDR-equipped vehicles were classified and their characteristics were analyzed by comparing them with accident types of ADAS (Advanced Driver Assistance System)-equipped vehicles. It will be used to develop autonomous vehicle accident investigation guidelines in the future.

A Study on Evaluation Method of the LKAS Test in Domestic Road Environment (국내도로환경을 고려한 LKAS 시험평가 방법에 관한 연구)

  • Yoon, Pil-Hwan;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.628-637
    • /
    • 2017
  • The automobile industry has developed Advanced Driver Assistance Systems (ADASs) to prevent traffic accidents and reduce the burden for drivers. One example is the Lane Keeping Assistance System (LKAS), which was developed for automotive vehicle systems for safety and better driving. The main system of the LKAS supports the driver while maintaining the vehicle within a lane. LKAS uses a radar sensor and camera sensor to collect information about the vehicle's position in the lane and send commands to the actuator to influence the lateral movement of the vehicle if necessary. Recently, vehicles equipped with LKAS have become commercially available. Test procedures for international LKAS evaluation are being discussed and developed by international committees, such as the International Organization for Standardization and United Nations Economic Commission for Europe. In Korea, an evaluation of LKASs for car safety is being planned by the Korean New Car Assessment Program. Therefore, test procedures should be developed for LKASs that are suitable for the domestic road environment while accommodating international standards. We developed a test scenario for LKASs and propose a formula for obtaining the target relative distance. To validate the methods, a series of experiments were conducted using commercially available vehicles equipped with LKAS.

Estimating a Range of Lane Departure Allowance based on Road Alignment in an Autonomous Driving Vehicle (자율주행 차량의 도로 평면선형 기반 차로이탈 허용 범위 산정)

  • Kim, Youngmin;Kim, Hyoungsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.81-90
    • /
    • 2016
  • As an autonomous driving vehicle (AV) need to cope with external road conditions by itself, its perception performance for road environment should be better than that of a human driver. A vision sensor, one of AV sensors, performs lane detection function to percept road environment for performing safe vehicle steering, which relates to define vehicle heading and lane departure prevention. Performance standards for a vision sensor in an ADAS(Advanced Driver Assistance System) focus on the function of 'driver assistance', not on the perception of 'independent situation'. So the performance requirements for a vision sensor in AV may different from those in an ADAS. In assuming that an AV keep previous steering due to lane detection failure, this study calculated lane departure distances between the AV location following curved road alignment and the other one driving to the straight in a curved section. We analysed lane departure distance and time with respect to the allowance of lane detection malfunction of an AV vision sensor. With the results, we found that an AV would encounter a critical lane departure situation if a vision sensor loses lane detection over 1 second. Therefore, it is concluded that the performance standards for an AV should contain more severe lane departure situations than those of an ADAS.

A Study of Aggressive Driver Detection Combining Machine Learning Model and Questionnaire Approaches (기계학습 모델과 설문결과를 융합한 공격적 성향 운전자 탐색 연구)

  • Park, Kwi Woo;Park, Chansik
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • In this paper, correlation analysis was performed between questionnaire and machine learning based aggressive tendency measurements. this study is part of a aggressive driver detection using machine learning and questionnaire. To collect two types tendency from questionnaire and measurements system, we constructed experiments environments and acquired the data from 30 drivers. In experiment, the machine learning based aggressive tendency measurements system was designed using a driver behavior detection model. And the model was constructed using accelerate and brake position data and hidden markov model method through supervised learning. We performed a correlation analysis between two types tendency using Pearson method. The result was represented to high correlation. The results will be utilize for fusing questionnaire and machine learning. Furthermore, It is verified that the machine learning based aggressive tendency is unique to each driver. The aggressive tendency of driver will be utilized as measurements for advanced driver assistance system such as attention assist, driver identification and anti-theft system.

Traffic Sign Detection Using The HSI Eigen-color model and Invariant Moments (HSI 고유칼라 모델과 불변 모멘트를 이용한 교통 표지판 검출 방법)

  • Kim, Jong-Bae;Park, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.41-51
    • /
    • 2010
  • In the research for driver assistance systems, traffic sign information to the driver must be a very important information. Therefore, the detection system of traffic signs located on the road should be able to handel real-time. To detect the traffic signs, color and shape of traffic signs is to use the information after images obtained using the CCD camera. In the road environment, however, using color information to detect traffic sings will cause many problems due to changes of weather and environmental factors. In this paper, to solve it, the candidate traffic sign regions are detected from road images obtained in a variety of the illumination changes using the HSI eign-color model. And then, using the invariant moment-based SVM classifier to detect traffic signs are proposed. Experimental results show that, traffic sign detection rate is 91%, and the processing time per frame is 0.38sec. Proposed method is useful for real-time intelligent traffic guidance systems can be applied.

The Study on the Development of the Car Driver's Front Attention Enhancement System using the Car Camera (차량카메라 영상을 이용한 운전자 전방 주의력향상 시스템 개발에 관한 연구)

  • Lee, Sang-Ha;Shim, Min Kyung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • In this paper for developing and implementing the car driver's front lane attention enhancement developed system using the car camera. The developed system automatically alarm the car driver when front cars make the dangerous situation. We use Raspberry Pi camera module V2 as car camera module, Raspberry Pi 3 board as hardware main board of implementing embedded system and develop the application library module which can be operated on the Raspberry situation. The application library module widely consist of two part, front car recognition part and dangerous situation distinguish part. Our developed system satisfy the performance test of the target system at the software test certification laboratory of TTA(Telecommunication Technology Association). We test four items as attentive car recognition ability at day and night, system performance, response time. We get the performance of developed system based on the four goal. The car driver's front lane attention enhancement system in this paper will be widely used at the ADAS(Advanced Driving Assistance System) because of the better performance and function.