• Title/Summary/Keyword: Driver Assistance

Search Result 228, Processing Time 0.022 seconds

Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach (미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로)

  • Ma Hyoung Ryul;Lee Cheol-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.

Revolutionizing Traffic Sign Recognition with YOLOv9 and CNNs

  • Muteb Alshammari;Aadil Alshammari
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.14-20
    • /
    • 2024
  • Traffic sign recognition is an essential feature of intelligent transportation systems and Advanced Driver Assistance Systems (ADAS), which are necessary for improving road safety and advancing the development of autonomous cars. This research investigates the incorporation of the YOLOv9 model into traffic sign recognition systems, utilizing its sophisticated functionalities such as Programmable Gradient Information (PGI) and Generalized Efficient Layer Aggregation Network (GELAN) to tackle enduring difficulties in object detection. We employed a publically accessible dataset obtained from Roboflow, which consisted of 3130 images classified into five distinct categories: speed_40, speed_60, stop, green, and red. The dataset was separated into training (68%), validation (21%), and testing (12%) subsets in a methodical manner to ensure a thorough examination. Our comprehensive trials have shown that YOLOv9 obtains a mean Average Precision (mAP@0.5) of 0.959, suggesting exceptional precision and recall for the majority of traffic sign classes. However, there is still potential for improvement specifically in the red traffic sign class. An analysis was conducted on the distribution of instances among different traffic sign categories and the differences in size within the dataset. This analysis aimed to guarantee that the model would perform well in real-world circumstances. The findings validate that YOLOv9 substantially improves the precision and dependability of traffic sign identification, establishing it as a dependable option for implementation in intelligent transportation systems and ADAS. The incorporation of YOLOv9 in real-world traffic sign recognition and classification tasks demonstrates its promise in making roadways safer and more efficient.

KANO-TOPSIS Model for AI Based New Product Development: Focusing on the Case of Developing Voice Assistant System for Vehicles (KANO-TOPSIS 모델을 이용한 지능형 신제품 개발: 차량용 음성비서 시스템 개발 사례)

  • Yang, Sungmin;Tak, Junhyuk;Kwon, Donghwan;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.287-310
    • /
    • 2022
  • Companies' interest in developing AI-based intelligent new products is increasing. Recently, the main concern of companies is to innovate customer experience and create new values by developing new products through the effective use of Artificial intelligence technology. However, due to the nature of products based on radical technologies such as artificial intelligence, intelligent products differ from existing products and development methods, so it is clear that there is a limitation to applying the existing development methodology as it is. This study proposes a new research method based on KANO-TOPSIS for the successful development of AI-based intelligent new products by using car voice assistants as an example. Using the KANO model, select and evaluate functions that customers think are necessary for new products, and use the TOPSIS method to derives priorities by finding the importance of functions that customers need. For the analysis, major categories such as vehicle condition check and function control elements, driving-related elements, characteristics of voice assistant itself, infotainment elements, and daily life support elements were selected and customer demand attributes were subdivided. As a result of the analysis, high recognition accuracy should be considered as a top priority in the development of car voice assistants. Infotainment elements that provide customized content based on driver's biometric information and usage habits showed lower priorities than expected, while functions related to driver safety such as vehicle condition notification, driving assistance, and security, also showed as the functions that should be developed preferentially. This study is meaningful in that it presented a new product development methodology suitable for the characteristics of AI-based intelligent new products with innovative characteristics through an excellent model combining KANO and TOPSIS.

Study on Development of Wheelchair Transfer-Storage Mechanism for Car (차량용 휠체어 이송수납메커니즘의 개발에 관한 연구)

  • Lim, Gu;Kim, Yong Seok;Le, QuangHoan;Jeang, Young Man;Oh, Dong Kwan;Oh, Ji Woo;Yea, Chan Ho;Yang, Soon Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1109-1116
    • /
    • 2014
  • The wheelchair mechanism for a car that is proposed in this study primarily consists of a transfer mechanism and storage mechanism. The wheelchair transfer mechanism consists of a manipulator installed in the roof of a car, and performs the function of transferring the wheelchair from the driver's seat to the trunk. The wheelchair storage mechanism consists of a lifting hoist installed in the trunk of car, and performs the function of storing the transferred wheelchair in the trunk and safely fastening it in place. This study analyzed and reviewed various manipulators, including a vertical type, Scara type, and telescopic type, with the goal of selecting the best type of manipulator for the wheelchair transfer mechanism. The telescopic type was selected and applied because of its good load support and storage capabilities. In addition, with regard to the wheelchair storage mechanism, a slide hoist type that used a slide rail and lift wire and a rotating link hoist type that used a rotating mechanism consisting of a worm gear and link were analyzed and reviewed. The slide hoist type was selected and applied because it had an advantage in relation to trunk space utilization. This study proposed a wheelchair transfer mechanism for a car to support a conventional wheelchair user's movements, and in order to conform to the structure of a domestic welfare car for the disabled.

A Study on Estimation of Traffic Flow Using Image-based Vehicle Identification Technology (영상기반 차량인식 기법을 이용한 교통류 추정에 관한 연구)

  • Kim, Minjeong;Jeong, Daehan;Kim, Hoe Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.110-123
    • /
    • 2019
  • Traffic data is the most basic element necessary for transportation planning and traffic system operation. Recently, a method of estimating traffic flow characteristics using distance to a leading vehicle measured by an ADAS camera has been attempted. This study investigated the feasibility of the ADAS vehicle reflecting the distance error of image-based vehicle identification technology as a means to estimate the traffic flow through the normalized root mean square error (NRMSE) based on the number of lanes, traffic demand, penetration rate of probe vehicle, and time-space estimation area by employing the microscopic simulation model, VISSIM. As a result, the estimate of low density traffic flow (i.e., LOS A, LOS B) is unreliable due to the limitation of the maximum identification distance of ADAS camera. Although the reliability of the estimates can be improved if multiple lanes, high traffic demands, and high penetration rates are implemented, artificially raising the penetration rates is unrealistic. Their reliability can be improved by extending the time dimension of the estimation area as well, but the most influential one is the driving behavior of the ADAS vehicle. In conclusion, although it is not possible to accurately estimate the traffic flow with the ADAS camera, its applicability will be expanded by improving its performance and functions.

Traffic Sign Recognition using SVM and Decision Tree for Poor Driving Environment (SVM과 의사결정트리를 이용한 열악한 환경에서의 교통표지판 인식 알고리즘)

  • Jo, Young-Bae;Na, Won-Seob;Eom, Sung-Je;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2014
  • Traffic Sign Recognition(TSR) is an important element in an Advanced Driver Assistance System(ADAS). However, many studies related to TSR approaches only in normal daytime environment because a sign's unique color doesn't appear in poor environment such as night time, snow, rain or fog. In this paper, we propose a new TSR algorithm based on machine learning for daytime as well as poor environment. In poor environment, traditional methods which use RGB color region doesn't show good performance. So we extracted sign characteristics using HoG extraction, and detected signs using a Support Vector Machine(SVM). The detected sign is recognized by a decision tree based on 25 reference points in a Normalized RGB system. The detection rate of the proposed system is 96.4% and the recognition rate is 94% when applied in poor environment. The testing was performed on an Intel i5 processor at 3.4 GHz using Full HD resolution images. As a result, the proposed algorithm shows that machine learning based detection and recognition methods can efficiently be used for TSR algorithm even in poor driving environment.

Gender Differences in Electromyography of the Lower Extremity during Golf Driver Swing (골프 드라이버 스윙 시 성별에 따른 하지근육활동의 비교)

  • Kim, So-Yoon;Lee, Joong-Sook;Yang, Jeong-Ok;Rhee, Sang-Don;Kim, Young-Soo;Lee, Bom-Jin;Kim, In-Hyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.557-566
    • /
    • 2009
  • This study was to investigate gender differences in muscle activities on tibialis anterior muscle, gastrocnemius and vastus medialis obliqus and outside and prime mover, antagonist and assistance mover during golf drive swing by electromyography. Ten healthy professional golfers (KPGA(n)=5, KLPGA(n)=5) volunteered in this experiment. All statistical analyses were performed using SPSS. Statistical differences were assess using t-test (p<.05). The conclusion of this study was as following. Muscle dislocation of differences, according to gender, was the highest in case of males in right side of gastrocnemius with the section from the address to the backswing of top and was the highest in case of females in tibialis anterior muscle. Results also show that prime mover was left side of low muscle in case of male with all the sections and situations and is right side low muscle in case of female. These results were significant differences. In case of males, it was though that primer mover was left side of tibialis anterior muscle with moving weight from backswing of top till the address section. In case of females, primer movers were right side of vastus medialis obliqus and tibialis anterior muscle with pushing action form the right knee to the left knee. Therefore, if they try to do the training be able to development right side of vastus medialis obliqus and tibialis anterior muscle in case of females and left side of vastus medialis obliqus and tibialis anterior muscle in case of males, it is consider that golfers' distance and direction will get better.

Performance Analysis of Object Detection Neural Network According to Compression Ratio of RGB and IR Images (RGB와 IR 영상의 압축률에 따른 객체 탐지 신경망 성능 분석)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Lee, Hee Kyung;Choo, Hyon-Gon;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.155-166
    • /
    • 2021
  • Most object detection algorithms are studied based on RGB images. Because the RGB cameras are capturing images based on light, however, the object detection performance is poor when the light condition is not good, e.g., at night or foggy days. On the other hand, high-quality infrared(IR) images regardless of weather condition and light can be acquired because IR images are captured by an IR sensor that makes images with heat information. In this paper, we performed the object detection algorithm based on the compression ratio in RGB and IR images to show the detection capabilities. We selected RGB and IR images that were taken at night from the Free FLIR Thermal dataset for the ADAS(Advanced Driver Assistance Systems) research. We used the pre-trained object detection network for RGB images and a fine-tuned network that is tuned based on night RGB and IR images. Experimental results show that higher object detection performance can be acquired using IR images than using RGB images in both networks.